Soil shrinkage and consolidation study on flood embankments in swamp irrigation areas

Q2 Materials Science Engineering Solid Mechanics Pub Date : 2021-01-01 DOI:10.5267/J.ESM.2021.1.003
L. Afriani, G. Susilo, Sri Nawangrini, Iswan Iswan
{"title":"Soil shrinkage and consolidation study on flood embankments in swamp irrigation areas","authors":"L. Afriani, G. Susilo, Sri Nawangrini, Iswan Iswan","doi":"10.5267/J.ESM.2021.1.003","DOIUrl":null,"url":null,"abstract":"Research in this paper discusses shrinking and consolidation of flood embankments soil in swamp irrigation areas. The flood embankments are made from swampy soil materials. The focus of this research is the reduction of dyke embankment height that occurs due to soil shrinkage and soil consolidation. Investigations about the time of consolidation and land subsidence that occurred on the embankment at certain periods after the embankment established were also carried out in this study. The research sites are some swamp irrigation areas in the Tulang Bawang Watershed, around North-East Lampung, Indonesia. This research was carried out by conducting laboratory tests on soil samples and field observations on the reduction in height of flood embankments in the study area. The research shows that the main cause of total decrease on the embankment is due to linear shrinkage, consolidation of soil under the embankment, an immediate subsidence, and the subsidence of the embankment themselves. Their contribution to total decrease of embankment is 42.51%, 34.48%, 18.32%, and 4.62%, respectively. Results also indicate that the ratio between the percentage of embankment consolidation in downstream area happen faster than the one in upstream area of the river.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/J.ESM.2021.1.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

Abstract

Research in this paper discusses shrinking and consolidation of flood embankments soil in swamp irrigation areas. The flood embankments are made from swampy soil materials. The focus of this research is the reduction of dyke embankment height that occurs due to soil shrinkage and soil consolidation. Investigations about the time of consolidation and land subsidence that occurred on the embankment at certain periods after the embankment established were also carried out in this study. The research sites are some swamp irrigation areas in the Tulang Bawang Watershed, around North-East Lampung, Indonesia. This research was carried out by conducting laboratory tests on soil samples and field observations on the reduction in height of flood embankments in the study area. The research shows that the main cause of total decrease on the embankment is due to linear shrinkage, consolidation of soil under the embankment, an immediate subsidence, and the subsidence of the embankment themselves. Their contribution to total decrease of embankment is 42.51%, 34.48%, 18.32%, and 4.62%, respectively. Results also indicate that the ratio between the percentage of embankment consolidation in downstream area happen faster than the one in upstream area of the river.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沼泽灌区洪水堤防土壤收缩固结研究
本文对沼泽灌区防洪堤土的收缩固结进行了研究。防洪堤是用沼泽土材料筑成的。本文研究的重点是由于土壤收缩和固结引起的堤防高度的降低。研究了路基固结时间和路基建成后一定时期路基发生的地面沉降情况。研究地点是印度尼西亚南榜东北部附近的Tulang Bawang流域的一些沼泽灌溉区。本研究是通过对土壤样品进行实验室试验和对研究区防洪堤高度降低的实地观察来进行的。研究表明,路堤总荷载下降的主要原因是直线收缩、路堤下土体固结、路堤立即沉降和路堤自身沉降。对路堤总减少量的贡献分别为42.51%、34.48%、18.32%和4.62%。结果还表明,下游地区的堤防固结率比上游地区的更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Solid Mechanics
Engineering Solid Mechanics Materials Science-Metals and Alloys
CiteScore
3.00
自引率
0.00%
发文量
21
期刊介绍: Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.
期刊最新文献
Combined hardening parameters of high strength steel under low cycle fatigue Design modification and performance evaluation of mini-hydrostatic pressure apparatus for inclined plane circular surface Comparison of different supervised machine learning algorithms for bead geometry prediction in GMAW process Impact of thickness, void content, temperature and loading rate on tensile fracture toughness and work of fracture of asphalt mixtures- An experimental study using the SCB test Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1