Proposed method of forecasting cumulative effects of variation in manufacturing

Q2 Materials Science Engineering Solid Mechanics Pub Date : 2022-01-01 DOI:10.5267/j.esm.2022.3.001
Q. Risch
{"title":"Proposed method of forecasting cumulative effects of variation in manufacturing","authors":"Q. Risch","doi":"10.5267/j.esm.2022.3.001","DOIUrl":null,"url":null,"abstract":"Manufacturing, in general, creates a finished good from a set of simpler supplied parts. Supplied parts are installed into higher assemblies, higher assemblies move into even higher assemblies, and eventually this terminates at the finished good. Delays or variation during the manufacturing process ripple all the way to the finished good, possibly from different branches of the build and possibly magnifying any individual effect. There is extensive literature regarding Lean Manufacturing and it provides strategies and business philosophy to deal with variation, however it offers little in the way of quantitative analysis on the effects of that variation upon the whole. Digital Twins and discrete event simulations can and have been used to model the impact of variation in its totality. Various papers on Digital Twins have explored how to model manufacturing, but very little on generalized behavior. (i.e. How schedule slips at the subassemblies impacts the delivery dates / quantities at the finished good level). This paper explores the analytical quantitative effects of input/sales variation through the manufacturing cycle and the resultant effect on the finished good manufacturing schedule/cycle. We demonstrate that even small random variations/interruptions propagate up the build chain, get reduced in magnitude and end up producing predictable reductions in the average build rate of the final product. Additionally, it is shown that the more supplied parts that comprise a finished good the greater the expected reduction in average build rate.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2022.3.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Manufacturing, in general, creates a finished good from a set of simpler supplied parts. Supplied parts are installed into higher assemblies, higher assemblies move into even higher assemblies, and eventually this terminates at the finished good. Delays or variation during the manufacturing process ripple all the way to the finished good, possibly from different branches of the build and possibly magnifying any individual effect. There is extensive literature regarding Lean Manufacturing and it provides strategies and business philosophy to deal with variation, however it offers little in the way of quantitative analysis on the effects of that variation upon the whole. Digital Twins and discrete event simulations can and have been used to model the impact of variation in its totality. Various papers on Digital Twins have explored how to model manufacturing, but very little on generalized behavior. (i.e. How schedule slips at the subassemblies impacts the delivery dates / quantities at the finished good level). This paper explores the analytical quantitative effects of input/sales variation through the manufacturing cycle and the resultant effect on the finished good manufacturing schedule/cycle. We demonstrate that even small random variations/interruptions propagate up the build chain, get reduced in magnitude and end up producing predictable reductions in the average build rate of the final product. Additionally, it is shown that the more supplied parts that comprise a finished good the greater the expected reduction in average build rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出了一种预测制造业变化累积效应的方法
一般来说,制造业是从一组较简单的供应部件生产出成品。供应的部件被安装到更高的组件中,更高的组件移动到更高的组件中,最终在成品中终止。制造过程中的延迟或变化会一直波及成品,可能来自制造的不同分支,并可能放大任何单个影响。关于精益制造有大量的文献,它提供了处理变化的策略和经营哲学,但是它很少提供对变化对整体影响的定量分析。数字孪生和离散事件模拟可以并且已经被用来模拟其总体变化的影响。关于数字孪生的许多论文都探讨了如何为制造业建模,但很少涉及广义行为。(例如,组件的进度延误如何影响成品水平的交付日期/数量)。本文探讨了通过制造周期对投入/销售变化的分析定量影响,以及由此产生的对成品制造进度/周期的影响。我们证明,即使是很小的随机变化/中断也会在构建链中传播,在量级上得到减少,并最终在最终产品的平均构建速率中产生可预测的减少。此外,它表明,组成成品的供应零件越多,平均建造率的预期降低就越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Solid Mechanics
Engineering Solid Mechanics Materials Science-Metals and Alloys
CiteScore
3.00
自引率
0.00%
发文量
21
期刊介绍: Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.
期刊最新文献
Combined hardening parameters of high strength steel under low cycle fatigue Design modification and performance evaluation of mini-hydrostatic pressure apparatus for inclined plane circular surface Comparison of different supervised machine learning algorithms for bead geometry prediction in GMAW process Impact of thickness, void content, temperature and loading rate on tensile fracture toughness and work of fracture of asphalt mixtures- An experimental study using the SCB test Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1