An investigation on mechanical properties of 3D pen fused zones for additive manufactured parts

Q2 Materials Science Engineering Solid Mechanics Pub Date : 2023-01-01 DOI:10.5267/j.esm.2023.3.003
Senthil Maharaj Ramesh Kennedy, R. Robert, P. Seenikannan, Vasanthanathan Arunachalam, K. Amudhan
{"title":"An investigation on mechanical properties of 3D pen fused zones for additive manufactured parts","authors":"Senthil Maharaj Ramesh Kennedy, R. Robert, P. Seenikannan, Vasanthanathan Arunachalam, K. Amudhan","doi":"10.5267/j.esm.2023.3.003","DOIUrl":null,"url":null,"abstract":"Additive manufacturing has been one of the most used techniques in the recent years because of its capabilities to fabricate complex structures as required by customer and industrial need from a 3D computer-aided design model without the usage of any tooling, dies and heavy machinery makes it a step ahead in the present manufacturing techniques. In the current study the author’s focus on the welding or joining of additive manufactured Polylactic acid (PLA) parts made by Fused Deposition Modeling (FDM). There are several techniques for welding these additive manufactured parts. This study mainly focuses on the joining of 3D printed PLA parts using a 3D pen and investigations on its mechanical properties experimentally. It is a very cheap and effective technique when compared to the other welding methods. This could overcome the drawback of small bed size in most 3D printers by joining smaller parts and it can also be used for repairing the defects caused during the 3D printing. Moreover the experimental testing of the mechanical properties also confirmed that the tensile, flexural and impact strength of 3D pen welded specimens retrieved above 70% of the strength to the original PLA specimen proving it to be a very effective method.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2023.3.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

Abstract

Additive manufacturing has been one of the most used techniques in the recent years because of its capabilities to fabricate complex structures as required by customer and industrial need from a 3D computer-aided design model without the usage of any tooling, dies and heavy machinery makes it a step ahead in the present manufacturing techniques. In the current study the author’s focus on the welding or joining of additive manufactured Polylactic acid (PLA) parts made by Fused Deposition Modeling (FDM). There are several techniques for welding these additive manufactured parts. This study mainly focuses on the joining of 3D printed PLA parts using a 3D pen and investigations on its mechanical properties experimentally. It is a very cheap and effective technique when compared to the other welding methods. This could overcome the drawback of small bed size in most 3D printers by joining smaller parts and it can also be used for repairing the defects caused during the 3D printing. Moreover the experimental testing of the mechanical properties also confirmed that the tensile, flexural and impact strength of 3D pen welded specimens retrieved above 70% of the strength to the original PLA specimen proving it to be a very effective method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造零件三维笔焊区力学性能研究
近年来,增材制造已经成为最常用的技术之一,因为它能够根据客户和工业需求从3D计算机辅助设计模型中制造复杂的结构,而无需使用任何工具,模具和重型机械,使其在当前的制造技术中领先一步。在目前的研究中,作者的重点是用熔融沉积建模(FDM)制造的添加剂制造的聚乳酸(PLA)零件的焊接或连接。焊接这些增材制造的零件有几种技术。本文主要研究了3D打印PLA零件的3D笔连接,并对其力学性能进行了实验研究。与其他焊接方法相比,它是一种非常便宜和有效的技术。这可以通过连接较小的部件来克服大多数3D打印机的小床尺寸的缺点,也可以用于修复3D打印过程中产生的缺陷。此外,力学性能的实验测试也证实了三维笔焊试样的拉伸、弯曲和冲击强度恢复到原始PLA试样强度的70%以上,证明了该方法是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Solid Mechanics
Engineering Solid Mechanics Materials Science-Metals and Alloys
CiteScore
3.00
自引率
0.00%
发文量
21
期刊介绍: Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.
期刊最新文献
Combined hardening parameters of high strength steel under low cycle fatigue Design modification and performance evaluation of mini-hydrostatic pressure apparatus for inclined plane circular surface Comparison of different supervised machine learning algorithms for bead geometry prediction in GMAW process Impact of thickness, void content, temperature and loading rate on tensile fracture toughness and work of fracture of asphalt mixtures- An experimental study using the SCB test Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1