Novel Machine Learning (ML) Algorithms to Classify IPv6 Network Traffic in Resource-Limited Systems

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Computer Science-AGH Pub Date : 2022-09-16 DOI:10.53070/bbd.1172706
Yıldıran Yılmaz, Selim Buyrukoğlu, M. Alım
{"title":"Novel Machine Learning (ML) Algorithms to Classify IPv6 Network Traffic in Resource-Limited Systems","authors":"Yıldıran Yılmaz, Selim Buyrukoğlu, M. Alım","doi":"10.53070/bbd.1172706","DOIUrl":null,"url":null,"abstract":"Providing machine learning (ML) based security in heterogeneous IoT networks including resource-constrained devices is a challenge because of the fact that conventional ML algorithms require heavy computations. Therefore, in this paper, lightweight ProtoNN, CMSIS-NN, and Bonsai tree ML algorithms were evaluated by using performance metrics such as testing accuracy, precision, F1 score and recall to test their classification ability on the IPv6 network dataset generated on resource-scarce embedded devices. The Bonsai tree algorithm provided the best performance results in all metrics (98.8 in accuracy, 98.9% in F1 score, 99.2% in precision, and 98.8% in recall) compared to the ProtoNN, and CMSIS-NN algorithms.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53070/bbd.1172706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Providing machine learning (ML) based security in heterogeneous IoT networks including resource-constrained devices is a challenge because of the fact that conventional ML algorithms require heavy computations. Therefore, in this paper, lightweight ProtoNN, CMSIS-NN, and Bonsai tree ML algorithms were evaluated by using performance metrics such as testing accuracy, precision, F1 score and recall to test their classification ability on the IPv6 network dataset generated on resource-scarce embedded devices. The Bonsai tree algorithm provided the best performance results in all metrics (98.8 in accuracy, 98.9% in F1 score, 99.2% in precision, and 98.8% in recall) compared to the ProtoNN, and CMSIS-NN algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在资源有限系统中分类IPv6网络流量的新型机器学习(ML)算法
在异构物联网网络(包括资源受限设备)中提供基于机器学习(ML)的安全性是一项挑战,因为传统的ML算法需要大量的计算。因此,本文采用测试精度、精密度、F1分数、召回率等性能指标对轻量级ProtoNN、CMSIS-NN和Bonsai树ML算法进行评估,测试它们在资源稀缺的嵌入式设备上生成的IPv6网络数据集上的分类能力。与ProtoNN和CMSIS-NN算法相比,Bonsai树算法在所有指标上都提供了最好的性能结果(准确率为98.8,F1分数为98.9%,精度为99.2%,召回率为98.8%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Science-AGH
Computer Science-AGH COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.40
自引率
0.00%
发文量
18
审稿时长
20 weeks
期刊最新文献
A Nature Inspired Hybrid Partitional Clustering Method Based on Grey Wolf Optimization and JAYA Algorithm Database Replication for Disconnected Operations with Quasi Real-Time Synchronization Hybrid Variable Neighborhood Search for Solving School Bus-Driver Problem with Resource Constraints A Survey on Multi-Objective Based Parameter Optimization for Deep Learning Melanoma Skin Cancer and Nevus Mole Classification using Intensity Value Estimation with Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1