{"title":"DEVELOPMENT OF ENSEMBLE MACHINE LEARNING MODEL TO IMPROVE COVID-19 OUTBREAK FORECASTING","authors":"Meaad Alrehaili, F. Assiri, Kouther Omari","doi":"10.5455/jjcit.71-1640174252","DOIUrl":null,"url":null,"abstract":"The world is currently facing the coronavirus disease 2019 (COVID-19 pandemic). Forecasting the progression of that pandemic is integral to planning the necessary next steps by governments and organizations. Recent studies have examined the factors that may impact COVID-19 forecasting and others have built models for predicting the numbers of active cases, recovered cases and deaths. The aim of this study was to improve the forecasting predictions by developing an ensemble machine-learning model that can be utilized in addition to the Naïve Bayes classifier, which is one of the simplest and fastest probabilistic classifiers. The first ensemble model combined gradient boosting and random forest classifiers and the second combined support vector machine and random-forest classifiers. The numbers of confirmed, recovered and death cases will be predicted for a period of 10 days. The results will be compared to the findings of previous studies. The results showed that the ensemble algorithm that combined gradient boosting and random-forest classifiers achieved the best performance, with 99% accuracy in all cases.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1640174252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
The world is currently facing the coronavirus disease 2019 (COVID-19 pandemic). Forecasting the progression of that pandemic is integral to planning the necessary next steps by governments and organizations. Recent studies have examined the factors that may impact COVID-19 forecasting and others have built models for predicting the numbers of active cases, recovered cases and deaths. The aim of this study was to improve the forecasting predictions by developing an ensemble machine-learning model that can be utilized in addition to the Naïve Bayes classifier, which is one of the simplest and fastest probabilistic classifiers. The first ensemble model combined gradient boosting and random forest classifiers and the second combined support vector machine and random-forest classifiers. The numbers of confirmed, recovered and death cases will be predicted for a period of 10 days. The results will be compared to the findings of previous studies. The results showed that the ensemble algorithm that combined gradient boosting and random-forest classifiers achieved the best performance, with 99% accuracy in all cases.