SENTIMENT ANALYSIS BASED ON PROBABILISTIC CLASSIFIER TECHNIQUES IN VARIOUS INDONESIAN REVIEW DATA

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordanian Journal of Computers and Information Technology Pub Date : 2022-01-01 DOI:10.5455/jjcit.71-1646912715
Nur Hayatin, Suraya Alias, L. Hung, M. Sainin
{"title":"SENTIMENT ANALYSIS BASED ON PROBABILISTIC CLASSIFIER TECHNIQUES IN VARIOUS INDONESIAN REVIEW DATA","authors":"Nur Hayatin, Suraya Alias, L. Hung, M. Sainin","doi":"10.5455/jjcit.71-1646912715","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is the field in data science to achieve a broader holistic view of users’ needs and expectations. Indonesian user opinions have the potential to manage to be valuable information using sentiment analysis tasks. One of the most supervised learning techniques used in Indonesian sentiment analysis is the Naïve Bayes classifier. The classifier can be optimized and tuned in various models to increase the sentiment analysis model performance. This research aims to examine the performance of various Naïve Bayes models in sentiment analysis, especially when implemented in small datasets to handle overfitting problems. Four different Naïve Bayes models used are Gaussian, Multinomial, Complement, and Bernoulli. We also analyse the effect of various pre-processing techniques on the models’ performance. Moreover, we build the first fashion dataset from the Indonesian marketplace which has a unique character compared to the datasets from other domains. Finally, we also use the various dataset in the experiment to test the Naïve Bayes models' performance. From the experiment result, Complement Naïve Bayes is superior to other models, especially in handling overfitting with F1-score of approximately 0.82.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1646912715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment analysis is the field in data science to achieve a broader holistic view of users’ needs and expectations. Indonesian user opinions have the potential to manage to be valuable information using sentiment analysis tasks. One of the most supervised learning techniques used in Indonesian sentiment analysis is the Naïve Bayes classifier. The classifier can be optimized and tuned in various models to increase the sentiment analysis model performance. This research aims to examine the performance of various Naïve Bayes models in sentiment analysis, especially when implemented in small datasets to handle overfitting problems. Four different Naïve Bayes models used are Gaussian, Multinomial, Complement, and Bernoulli. We also analyse the effect of various pre-processing techniques on the models’ performance. Moreover, we build the first fashion dataset from the Indonesian marketplace which has a unique character compared to the datasets from other domains. Finally, we also use the various dataset in the experiment to test the Naïve Bayes models' performance. From the experiment result, Complement Naïve Bayes is superior to other models, especially in handling overfitting with F1-score of approximately 0.82.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率分类器技术的印尼语评论数据情感分析
情感分析是数据科学的一个领域,它可以更广泛地全面了解用户的需求和期望。使用情感分析任务,印尼用户的意见有可能成为有价值的信息。印度尼西亚情感分析中使用的最受监督的学习技术之一是Naïve贝叶斯分类器。分类器可以在各种模型中进行优化和调优,以提高情感分析模型的性能。本研究旨在检验各种Naïve贝叶斯模型在情感分析中的性能,特别是在小数据集中实现以处理过拟合问题时。四种不同的Naïve贝叶斯模型使用高斯,多项式,补和伯努利。我们还分析了各种预处理技术对模型性能的影响。此外,我们建立了第一个来自印度尼西亚市场的时尚数据集,与其他领域的数据集相比,该数据集具有独特的特征。最后,我们还使用实验中的各种数据集来测试Naïve贝叶斯模型的性能。从实验结果来看,Complement Naïve Bayes优于其他模型,特别是在处理过拟合方面,F1-score约为0.82。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Jordanian Journal of Computers and Information Technology
Jordanian Journal of Computers and Information Technology Computer Science-Computer Science (all)
CiteScore
3.10
自引率
25.00%
发文量
19
期刊最新文献
OPTIMAL ENERGY CONSUMPTION AND COST PERFORMANCE SOLUTION WITH DELAY CONSTRAINTS ON FOG COMPUTING ORTHOGONAL REGRESSED STEEPEST DESCENT DEEP PERCEPTIVE NEURAL LEARNING FOR IoT- AWARE SECURED BIG DATA COMMUNICATION AUTOMATIC DETECTION OF PNEUMONIA USING CONCATENATED CONVOLUTIONAL NEURAL NETWORK DESIGN OF A COMPACT BROADBAND ANTENNA USING CHARACTERISTIC MODE ANALYSIS FOR MICROWAVE APPLICATIONS Effectiveness of zero-shot models in automatic Arabic Poem generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1