A Blended Soft Computing Model for Stock Value Prediction

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordanian Journal of Computers and Information Technology Pub Date : 2023-01-01 DOI:10.5455/jjcit.71-1683995072
Usha Nsssn, D. R.
{"title":"A Blended Soft Computing Model for Stock Value Prediction","authors":"Usha Nsssn, D. R.","doi":"10.5455/jjcit.71-1683995072","DOIUrl":null,"url":null,"abstract":"Stock investments play a crucial role in deciding the global economic growth of the country. Investors can optimize profit and avoid risk through accurate stock value prediction models, which motivates researchers to work on various aspects of correlated features and predictive models for stock value prediction. The existing stock value prediction models used data like Twitter, microblogs, price history, and Google trends. On the other hand, Domain-specific dictionary-based deep learning evolved as a competitive model for alternative models in stock value prediction. But accuracy of these models depends on the quality of the input, the correlation among the features, and the correctness of the sentiment scores generated for the dictionary terms. Financial news sentiment analysis for stock value prediction with dictionary-based learning needs attention in improving the quality of the input and dictionary term’s sentiment score generation. The present research aims to develop a Blended soft computing model for stock value prediction (BSCM) with cooperative fusion and dictionary-based deep learning. In the current work, six Indian stocks that cover uptrend, sideways, and downtrends characteristics are considered with stock price histories and news headlines from 8th August 2016 to 31st March 2023, i.e., 2427 days. The number of records in the price history dataset is 14,562, and the news headlines dataset is 46,213. The performance of the stock value prediction can be improved by taking advantage of multi-source information and context-aware learning. The present research aims to achieve three objectives: 1. Apply cooperative fusion to combine the news headlines and price history of stocks collected from multiple sources to improve the quality of the input with correlated features. 2. Build a dictionary, FNSentiment, with a novel strategy. 3. Predict stock values using FNSentiment and News Sentiment Prediction Model (NSPM) integration. In the experimentation, the proposed model outperformed the state-of-the-art models with an accuracy of 91.11, RMSE of 10.35, MAPE of 0.02, and MAE of 2.74.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1683995072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Stock investments play a crucial role in deciding the global economic growth of the country. Investors can optimize profit and avoid risk through accurate stock value prediction models, which motivates researchers to work on various aspects of correlated features and predictive models for stock value prediction. The existing stock value prediction models used data like Twitter, microblogs, price history, and Google trends. On the other hand, Domain-specific dictionary-based deep learning evolved as a competitive model for alternative models in stock value prediction. But accuracy of these models depends on the quality of the input, the correlation among the features, and the correctness of the sentiment scores generated for the dictionary terms. Financial news sentiment analysis for stock value prediction with dictionary-based learning needs attention in improving the quality of the input and dictionary term’s sentiment score generation. The present research aims to develop a Blended soft computing model for stock value prediction (BSCM) with cooperative fusion and dictionary-based deep learning. In the current work, six Indian stocks that cover uptrend, sideways, and downtrends characteristics are considered with stock price histories and news headlines from 8th August 2016 to 31st March 2023, i.e., 2427 days. The number of records in the price history dataset is 14,562, and the news headlines dataset is 46,213. The performance of the stock value prediction can be improved by taking advantage of multi-source information and context-aware learning. The present research aims to achieve three objectives: 1. Apply cooperative fusion to combine the news headlines and price history of stocks collected from multiple sources to improve the quality of the input with correlated features. 2. Build a dictionary, FNSentiment, with a novel strategy. 3. Predict stock values using FNSentiment and News Sentiment Prediction Model (NSPM) integration. In the experimentation, the proposed model outperformed the state-of-the-art models with an accuracy of 91.11, RMSE of 10.35, MAPE of 0.02, and MAE of 2.74.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股票价值预测的混合软计算模型
股票投资在决定一个国家的全球经济增长中起着至关重要的作用。投资者可以通过准确的股票价值预测模型来实现利润的优化和风险的规避,这就促使研究人员对股票价值预测的相关特征和预测模型进行多方面的研究。现有的股票价值预测模型使用Twitter、微博、价格历史和谷歌趋势等数据。另一方面,基于特定领域词典的深度学习在股票价值预测中成为一种有竞争力的模型。但这些模型的准确性取决于输入的质量、特征之间的相关性以及为词典术语生成的情感得分的正确性。基于字典学习的财经新闻情感分析股票价值预测需要注意提高输入质量和字典词的情感评分生成。本研究旨在建立一种基于协同融合和基于字典的深度学习的股票价值预测混合软计算模型。在目前的工作中,我们考虑了2016年8月8日至2023年3月31日(即2427天)的股价历史和新闻头条,涵盖了上涨、横盘和下跌趋势特征的6只印度股票。价格历史数据集中的记录数量为14,562,新闻标题数据集中的记录数量为46,213。利用多源信息和上下文感知学习可以提高股票价值预测的性能。本研究旨在达到三个目标:1.研究目标:采用协同融合的方法,将从多个来源收集的新闻标题和股票价格历史进行组合,提高具有相关特征的输入质量。2. 用一种新颖的策略建立一个字典,FNSentiment。3.利用FNSentiment和News Sentiment Prediction Model (NSPM)集成预测股票价值。在实验中,该模型的准确率为91.11,RMSE为10.35,MAPE为0.02,MAE为2.74。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Jordanian Journal of Computers and Information Technology
Jordanian Journal of Computers and Information Technology Computer Science-Computer Science (all)
CiteScore
3.10
自引率
25.00%
发文量
19
期刊最新文献
OPTIMAL ENERGY CONSUMPTION AND COST PERFORMANCE SOLUTION WITH DELAY CONSTRAINTS ON FOG COMPUTING ORTHOGONAL REGRESSED STEEPEST DESCENT DEEP PERCEPTIVE NEURAL LEARNING FOR IoT- AWARE SECURED BIG DATA COMMUNICATION AUTOMATIC DETECTION OF PNEUMONIA USING CONCATENATED CONVOLUTIONAL NEURAL NETWORK DESIGN OF A COMPACT BROADBAND ANTENNA USING CHARACTERISTIC MODE ANALYSIS FOR MICROWAVE APPLICATIONS Effectiveness of zero-shot models in automatic Arabic Poem generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1