Mohamed Keshk, El-Sayed M. El-Rabie, F. E. El-Samie, Mohammed Abd El-Naby
{"title":"Blind Modulation Recognition in Wireless MC-CDMA Systems Using a Support Vector Machine Classifier","authors":"Mohamed Keshk, El-Sayed M. El-Rabie, F. E. El-Samie, Mohammed Abd El-Naby","doi":"10.4236/WET.2013.43022","DOIUrl":null,"url":null,"abstract":"Automatic Digital Modulation Recognition (ADMR) is becoming an interesting problem with various civil and military applications. In this paper, an ADMR algorithm in Multi-Carrier Code Division Multiple Access (MC-CDMA) systems using Discrete Transforms (DTs) and Mel-Frequency Cepstral Coefficients (MFCCs) is proposed. This algorithm uses various DT techniques such as the Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) with MFCCs to extract features from the modulated signal and a Support Vector Machine (SVM) to classify the modulation orders. The proposed algorithm avoids over fitting and local optimal problems that appear in Artificial Neural Networks (ANNs). Simulation results shows the classifier is capable of recognizing the modulation scheme with high accuracy up to 90% - 100% using DWT, DCT and DST for some modulation schemes over a wide Signal-to-Noise Ratio (SNR) range in the presence of Additive White Gaussian Noise (AWGN) and Rayleigh fading channel, particularly at a low Signal-to-Noise ratios (SNRs).","PeriodicalId":68067,"journal":{"name":"无线工程与技术(英文)","volume":"2013 1","pages":"145-153"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线工程与技术(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WET.2013.43022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Automatic Digital Modulation Recognition (ADMR) is becoming an interesting problem with various civil and military applications. In this paper, an ADMR algorithm in Multi-Carrier Code Division Multiple Access (MC-CDMA) systems using Discrete Transforms (DTs) and Mel-Frequency Cepstral Coefficients (MFCCs) is proposed. This algorithm uses various DT techniques such as the Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) with MFCCs to extract features from the modulated signal and a Support Vector Machine (SVM) to classify the modulation orders. The proposed algorithm avoids over fitting and local optimal problems that appear in Artificial Neural Networks (ANNs). Simulation results shows the classifier is capable of recognizing the modulation scheme with high accuracy up to 90% - 100% using DWT, DCT and DST for some modulation schemes over a wide Signal-to-Noise Ratio (SNR) range in the presence of Additive White Gaussian Noise (AWGN) and Rayleigh fading channel, particularly at a low Signal-to-Noise ratios (SNRs).