{"title":"Wireless Power Transmission into Metallic Tube Using Axial Slit for Infrastructure Diagnostics","authors":"K. Shimamura, K. Komurasaki","doi":"10.4236/WET.2015.63006","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) using a metallic tube with axial slits was attempted to demonstrate WPT using magnetic resonance coupling to the diagnostics infrastructure. The transmission efficiency was measured at various distances using the transmission and receiver resonator in the tube. Furthermore, the transmission and receiver resonator were set respectively outside and inside of the tube. Experiment results were assessed computationally using the finite-difference time-domain (FDTD) simulation. As a result, the transmission efficiency of the transmitter and receiver resonators in the metallic slit tube was higher than that of the case without a metallic tube in the range of the normalized transmission-distance of x/d > 0.4. In the simulation, the current density on the metallic tube around both transmitter and receiver coil were connected. These results reveal that the slit on the tube plays a role of the relay coil.","PeriodicalId":68067,"journal":{"name":"无线工程与技术(英文)","volume":"6 1","pages":"50-60"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线工程与技术(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WET.2015.63006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Wireless power transfer (WPT) using a metallic tube with axial slits was attempted to demonstrate WPT using magnetic resonance coupling to the diagnostics infrastructure. The transmission efficiency was measured at various distances using the transmission and receiver resonator in the tube. Furthermore, the transmission and receiver resonator were set respectively outside and inside of the tube. Experiment results were assessed computationally using the finite-difference time-domain (FDTD) simulation. As a result, the transmission efficiency of the transmitter and receiver resonators in the metallic slit tube was higher than that of the case without a metallic tube in the range of the normalized transmission-distance of x/d > 0.4. In the simulation, the current density on the metallic tube around both transmitter and receiver coil were connected. These results reveal that the slit on the tube plays a role of the relay coil.