Photoluminescence Properties of LaF 3 :Ce Nanoparticles Embedded in Polyacrylamide

T. K. Srinivasan, B. Venkatraman, D. Ponraju, A. Arora
{"title":"Photoluminescence Properties of LaF 3 :Ce Nanoparticles Embedded in Polyacrylamide","authors":"T. K. Srinivasan, B. Venkatraman, D. Ponraju, A. Arora","doi":"10.4236/WJNSE.2012.24027","DOIUrl":null,"url":null,"abstract":"Oleic acid coated LaF3:Ce nanoparticles were synthesized and embedded in polyacrylamide through a two-step procedure. In the first step nanoparticles were synthesized by adopting co-precipitation technique and in the second step, nanoparticles were embedded in polyacrylamide (PAM) hydro-gel through the solution route. Nanoparticels were characterized for their crystal structure, particle size, organic coating and photoluminescence behavior using X-ray diffracttion, SEM, TEM, FTIR and photoluminescence spectroscopy. Size of nanoparticles was estimated using the Scherer formula. Polymer nano composite (PNC) material was synthesized with two different weight percent of the nano powder viz 1.634% (termed as NG1) and 0.1664% (termed as NG2). The nanoparticle-polymer composite exhibits emissions at 308 and 370 nm. A comparison of the emission spectrum of LaF3:Ce nano-powder pellet with that of the composite suggests a suppression of emission from the PAM host in the composite.","PeriodicalId":66816,"journal":{"name":"纳米科学与工程(英文)","volume":"2 1","pages":"201-205"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米科学与工程(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/WJNSE.2012.24027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Oleic acid coated LaF3:Ce nanoparticles were synthesized and embedded in polyacrylamide through a two-step procedure. In the first step nanoparticles were synthesized by adopting co-precipitation technique and in the second step, nanoparticles were embedded in polyacrylamide (PAM) hydro-gel through the solution route. Nanoparticels were characterized for their crystal structure, particle size, organic coating and photoluminescence behavior using X-ray diffracttion, SEM, TEM, FTIR and photoluminescence spectroscopy. Size of nanoparticles was estimated using the Scherer formula. Polymer nano composite (PNC) material was synthesized with two different weight percent of the nano powder viz 1.634% (termed as NG1) and 0.1664% (termed as NG2). The nanoparticle-polymer composite exhibits emissions at 308 and 370 nm. A comparison of the emission spectrum of LaF3:Ce nano-powder pellet with that of the composite suggests a suppression of emission from the PAM host in the composite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚丙烯酰胺包埋laf3:Ce纳米粒子的光致发光性能
采用两步法合成了油酸包被的LaF3:Ce纳米颗粒并包埋在聚丙烯酰胺中。第一步采用共沉淀法合成纳米颗粒,第二步通过溶液途径将纳米颗粒包埋在聚丙烯酰胺(PAM)水凝胶中。利用x射线衍射、扫描电镜、透射电镜、傅里叶变换红外光谱和光致发光光谱对纳米粒子的晶体结构、粒径、有机涂层和光致发光行为进行了表征。使用Scherer公式估计纳米颗粒的大小。以1.634%(称为NG1)和0.1664%(称为NG2)两种不同重量百分比的纳米粉末合成聚合物纳米复合材料(PNC)。纳米颗粒-聚合物复合材料表现出308和370 nm的发射。LaF3:Ce纳米粉末颗粒与复合材料的发射光谱比较表明,复合材料中PAM宿主的发射光谱受到抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
103
期刊最新文献
Preparation of Antimicrobial Iron Oxide Nanostructures from Galvanizning Effluent Application of Corona Charge Deposition Technique in Thin Film Industry Nanoparticles Modified Electrodes: Synthesis, Modification, and Characterization—A Review Effects of R134a Saturation Temperature on a Shell and Tube Condenser with the Nanofluid Flow in the Tube Using the Thermal Efficiency and Effectiveness Concepts Er3+ and Er3+/Yb3+ Ions Embedded in Nano-Structure BaTi0.9Sn0.1O3: Structure, Morphology and Dielectric Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1