Suitability of different plant species for experimental agroinfection with Plum pox virus-based expression vector for potential production of edible vaccines.

IF 1.1 4区 医学 Q4 VIROLOGY Acta virologica Pub Date : 2022-01-01 DOI:10.4149/av_2022_111
Adam Achs, M. Glasa, P. Alaxin, Z. Šubr
{"title":"Suitability of different plant species for experimental agroinfection with Plum pox virus-based expression vector for potential production of edible vaccines.","authors":"Adam Achs, M. Glasa, P. Alaxin, Z. Šubr","doi":"10.4149/av_2022_111","DOIUrl":null,"url":null,"abstract":"Nine herbaceous plant species were tested for susceptibility to Plum pox virus (PPV) by Agrobacterium-mediated delivery of its infectious cDNA clone. Two of them became infected, namely spinach (local infection) and oilseed poppy (systemic infection). As a control, PPV infection was successfully established in plum seedlings following agroinfiltration, thus providing the first report of agroinfection in Prunus species. According to our results, oilseed poppy can be considered as a candidate host for the production of edible vaccines by a PPV-derived expression vector. Keywords: agroinfiltration; virus host; poppy; spinach.","PeriodicalId":7205,"journal":{"name":"Acta virologica","volume":"66 1 1","pages":"95-97"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta virologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/av_2022_111","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Nine herbaceous plant species were tested for susceptibility to Plum pox virus (PPV) by Agrobacterium-mediated delivery of its infectious cDNA clone. Two of them became infected, namely spinach (local infection) and oilseed poppy (systemic infection). As a control, PPV infection was successfully established in plum seedlings following agroinfiltration, thus providing the first report of agroinfection in Prunus species. According to our results, oilseed poppy can be considered as a candidate host for the production of edible vaccines by a PPV-derived expression vector. Keywords: agroinfiltration; virus host; poppy; spinach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以梅痘病毒为基础的表达载体对不同植物侵染试验的适宜性及可食用疫苗的潜在生产。
采用农杆菌介导的方法,检测了9种草本植物对李痘病毒(PPV)的易感性。其中两种感染,即菠菜(局部感染)和油籽罂粟(全身感染)。作为对照,PPV侵染在灌浆后成功地在李树幼苗中建立,首次报道了李树属植物的土壤侵染。根据我们的研究结果,油籽罂粟可以被认为是ppv衍生表达载体生产可食用疫苗的候选宿主。关键词:agroinfiltration;病毒主机;罂粟花;菠菜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta virologica
Acta virologica 医学-病毒学
CiteScore
3.10
自引率
11.80%
发文量
43
审稿时长
>12 weeks
期刊介绍: Acta virologica is an international journal of predominantly molecular and cellular virology. Acta virologica aims to publish papers reporting original results of fundamental and applied research mainly on human, animal and plant viruses at cellular and molecular level. As a matter of tradition, also rickettsiae are included. Areas of interest are virus structure and morphology, molecular biology of virus-cell interactions, molecular genetics of viruses, pathogenesis of viral diseases, viral immunology, vaccines, antiviral drugs and viral diagnostics.
期刊最新文献
The interaction of influenza A virus RNA polymerase PA subunit with the human β-actin protein Construction of recombinant adenovirus-5 vector to prevent replication-competent adenovirus occurrence Virtual screening and molecular dynamics simulation to identify potential SARS-CoV-2 3CLpro inhibitors from a natural product compounds library The TRK-fused gene negatively regulates interferon signaling by inhibiting TBK1 phosphorylation during PPMV-1 infection Favipiravir and ivermectin show in vitro synergistic antiviral activity against SARS-CoV-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1