The Effect of Carbon Rod—Specimens Distance on the Structural and Electrical Properties of Carbon Nanotube

M. Uonis, B. M. Mustafa, A. Ezzat
{"title":"The Effect of Carbon Rod—Specimens Distance on the Structural and Electrical Properties of Carbon Nanotube","authors":"M. Uonis, B. M. Mustafa, A. Ezzat","doi":"10.4236/WJNSE.2014.43014","DOIUrl":null,"url":null,"abstract":"The research studies the effect of the distance between the sample and the plasma sputtering source on the properties of the junction (silicon wafer-carbon nanotubes). The silicon wafer is fixed at (near, medium and far distances from the plasma source which is in the form of high purity graphite rod heated electrically). For the three cases, thickness of the sample is constant (20 nm). The samples were studied by scanning electron (SEM) and atomic force microscopes (AFM), X-ray and Raman spectra. For optimum distances the carbon layer is in the form of multi wall carbon nanotube (MWCNT). SEM images shows no formation of CNT on the Si wafer for near distance, which is consistent with the AFM images, X-ray and Raman spectrograms and no existence of characteristics (002) peaks whereas it appears for medium and longer distances, and by experience the optimum distance was found. This means that at closer distance high energy and high intensity plasma particles prevent the formation of CNT. This effect decreases with increasing distance of substrate from the graphite rod.","PeriodicalId":66816,"journal":{"name":"纳米科学与工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米科学与工程(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/WJNSE.2014.43014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The research studies the effect of the distance between the sample and the plasma sputtering source on the properties of the junction (silicon wafer-carbon nanotubes). The silicon wafer is fixed at (near, medium and far distances from the plasma source which is in the form of high purity graphite rod heated electrically). For the three cases, thickness of the sample is constant (20 nm). The samples were studied by scanning electron (SEM) and atomic force microscopes (AFM), X-ray and Raman spectra. For optimum distances the carbon layer is in the form of multi wall carbon nanotube (MWCNT). SEM images shows no formation of CNT on the Si wafer for near distance, which is consistent with the AFM images, X-ray and Raman spectrograms and no existence of characteristics (002) peaks whereas it appears for medium and longer distances, and by experience the optimum distance was found. This means that at closer distance high energy and high intensity plasma particles prevent the formation of CNT. This effect decreases with increasing distance of substrate from the graphite rod.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳棒试样距离对碳纳米管结构和电性能的影响
研究了样品与等离子溅射源之间的距离对硅-碳纳米管结性能的影响。将硅片固定在(近、中、远)距离电加热的高纯度石墨棒形式的等离子体源处。对于这三种情况,样品的厚度是恒定的(20 nm)。采用扫描电子显微镜(SEM)、原子力显微镜(AFM)、x射线和拉曼光谱对样品进行了研究。对于最佳距离,碳层以多壁碳纳米管(MWCNT)的形式存在。SEM图像显示近距离未形成碳纳米管,这与AFM图像,x射线和拉曼光谱图一致,并且不存在特征峰(002),而在中远距离出现,并根据经验找到了最佳距离。这意味着在较近的距离,高能和高强度等离子体粒子阻止碳纳米管的形成。这种效应随着衬底与石墨棒距离的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
103
期刊最新文献
Preparation of Antimicrobial Iron Oxide Nanostructures from Galvanizning Effluent Application of Corona Charge Deposition Technique in Thin Film Industry Nanoparticles Modified Electrodes: Synthesis, Modification, and Characterization—A Review Effects of R134a Saturation Temperature on a Shell and Tube Condenser with the Nanofluid Flow in the Tube Using the Thermal Efficiency and Effectiveness Concepts Er3+ and Er3+/Yb3+ Ions Embedded in Nano-Structure BaTi0.9Sn0.1O3: Structure, Morphology and Dielectric Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1