Detection of Angioectasias and Haemorrhages Incorporated into a Multi-Class Classification Tool for the GI Tract Anomalies by Using Binary CNNs

Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki
{"title":"Detection of Angioectasias and Haemorrhages Incorporated into a Multi-Class Classification Tool for the GI Tract Anomalies by Using Binary CNNs","authors":"Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki","doi":"10.4236/jbise.2021.1412034","DOIUrl":null,"url":null,"abstract":"The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm","PeriodicalId":64231,"journal":{"name":"生物医学工程(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jbise.2021.1412034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二元cnn的胃肠道异常多分类工具中血管扩张和出血的检测
本文提出的深度学习算法将被整合为一个二元分类器,在多类分类工具的框架下,通过检查胃肠道的医学内窥镜图像,实现对非健康畸形、解剖标志、病理发现、其他异常和正常情况的自动检测。每个二元分类器被训练来检测一个特定的非健康状态。本工作中分析的算法通过将胃肠道图像快照分为两类,描绘出血和非出血状态,扩展了该工具的检测能力。提出的算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
900
期刊最新文献
Tectona grandis (Teak Tree) Young Leaf Extract as a Histological Stain An Alternative Method for Incorporating Fiber Meshes in Complete Upper Dentures Research on the Chemical Hazard Risk of Toys Exported to EU from China Based on the Analysis of the EU “Safety Gate” Alerts Cases Impact of Association between Functional Training and Respiratory Muscle Training in Elderly: A Randomized Controlled Trial Morphogenesis of Floating Bone Segments: A Legacy of Serial Tensile Cross-Strut Microdamage in Trabecular Disconnection “Crumple Zones”?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1