Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki
{"title":"Detection of Angioectasias and Haemorrhages Incorporated into a Multi-Class Classification Tool for the GI Tract Anomalies by Using Binary CNNs","authors":"Christos Barbagiannis, Alexios A Polydorou, M. Zervakis, A. Polydorou, Eleftheria Sergaki","doi":"10.4236/jbise.2021.1412034","DOIUrl":null,"url":null,"abstract":"The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm","PeriodicalId":64231,"journal":{"name":"生物医学工程(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jbise.2021.1412034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The proposed deep learning algorithm will be integrated as a binary classifier under the umbrella of a multi-class classification tool to facilitate the automated detection of non-healthy deformities, anatomical landmarks, pathological findings, other anomalies and normal cases, by examining medical endoscopic images of GI tract. Each binary classifier is trained to detect one specific non-healthy condition. The algorithm analyzed in the present work expands the ability of detection of this tool by classifying GI tract image snapshots into two classes, depicting haemorrhage and non-haemorrhage state. The proposed algorithm