Insilico studies of 2-methylheptyl isonicotinate produced by Streptomyces sps. 201 against dihydrodipicolinate synthase enzyme of Mycobacterium tuberculosis

S. P. Singh, R. L. Bezbaruah, T. Bora
{"title":"Insilico studies of 2-methylheptyl isonicotinate produced by Streptomyces sps. 201 against dihydrodipicolinate synthase enzyme of Mycobacterium tuberculosis","authors":"S. P. Singh, R. L. Bezbaruah, T. Bora","doi":"10.4236/JBPC.2012.33027","DOIUrl":null,"url":null,"abstract":"Tuberculosis is thought to have infected one-third of the world’s population and antibiotic resistance is a growing problem in multi-drug-resistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). It has been reported that Mycobacterial cell walls are characterized by high DAP (diaminopimelic acid) content—an intermediate of the (S)-lysine biosynthetic pathway. Hence, the Lysine/DAP biosynthetic pathway is a promising target because of its role in cell wall and amino acid biosynthesis. In this study we performed a molecular docking analysis of a novel antibacterial isolated from Streptomyces sps. 201 against dihydrodipicolinate synthase (DHDPS) enzyme of Mycobacterium tuberculosis. The docking studies suggest that the novel molecule binds at active site LYS 171 forming a cleft and at other potential ligand binding site exhibiting all the major interactions such as hydrogen bonding, hydrophobic interaction and electrostatic interaction with (THR55, TYR143, ARG148, LYS171, VAL257 and GLY256) residues.","PeriodicalId":62927,"journal":{"name":"生物物理化学(英文)","volume":"3 1","pages":"233-237"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBPC.2012.33027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Tuberculosis is thought to have infected one-third of the world’s population and antibiotic resistance is a growing problem in multi-drug-resistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). It has been reported that Mycobacterial cell walls are characterized by high DAP (diaminopimelic acid) content—an intermediate of the (S)-lysine biosynthetic pathway. Hence, the Lysine/DAP biosynthetic pathway is a promising target because of its role in cell wall and amino acid biosynthesis. In this study we performed a molecular docking analysis of a novel antibacterial isolated from Streptomyces sps. 201 against dihydrodipicolinate synthase (DHDPS) enzyme of Mycobacterium tuberculosis. The docking studies suggest that the novel molecule binds at active site LYS 171 forming a cleft and at other potential ligand binding site exhibiting all the major interactions such as hydrogen bonding, hydrophobic interaction and electrostatic interaction with (THR55, TYR143, ARG148, LYS171, VAL257 and GLY256) residues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链霉菌合成异烟酸2-甲基庚酯的硅化研究。201抗结核分枝杆菌二氢二吡啶酸合酶
结核病被认为已感染了世界三分之一的人口,抗生素耐药性是由结核分枝杆菌(MTB)引起的耐多药结核病日益严重的问题。据报道,分枝杆菌细胞壁的特点是高DAP(二氨基苯甲酸)含量- (S)-赖氨酸生物合成途径的中间体。因此,赖氨酸/DAP生物合成途径因其在细胞壁和氨基酸生物合成中的作用而成为一个有希望的靶点。本研究对从链霉菌中分离的一种新型抗菌药物进行了分子对接分析。201抗结核分枝杆菌二氢二吡啶酸合酶(DHDPS)酶。对接研究表明,新分子与活性位点LYS171结合形成间隙,并与其他潜在配体结合位点(THR55, TYR143, ARG148, LYS171, VAL257和GLY256)残基发生氢键、疏水相互作用和静电相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
144
期刊最新文献
The Gastropod Shell Structure as a Blueprint for a Periodic System: A New Theory for Element Configurations The Biochemical Impact by Covalent Shielding of the Anionic Oxygen of the Phosphate Group in DNA and RNA as Methylated Phosphotriester Linkage on the Inhibition of DNA Duplication and on HIV-1 RNA Viral Infectivity Has Been Seriously Overlooked Analysis of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor-Induced Left Ventricular Dysfunction Design of N-11-Azaartemisinins Potentially Active against Plasmodium falciparum by Combined Molecular Electrostatic Potential, Ligand-Receptor Interaction and Models Built with Supervised Machine Learning Methods Chemometric Analysis of Volatile Compounds of NIPRINEEM Oil and Other Brands of Neem Seed Oils Sold in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1