{"title":"Aware Diffusion: A Semi-Holistic Routing Protocol for Wireless Sensor Networks","authors":"Kamil Samara, H. Hosseini","doi":"10.4236/WSN.2016.83004","DOIUrl":null,"url":null,"abstract":"Routing is a challenging task in Wireless Sensor Networks (WSNs) due to the limitation in energy and hardware capabilities in WSN nodes. This challenge prompted researchers to develop routing protocols that satisfy WSNs needs. The main design objectives are reliable delivery, low energy consumption, and prolonging network lifetime. In WSNs, routing is based on local information among neighboring nodes. Routing decisions are made locally; each node will select the next hop without any clue about the other nodes on the path. Although a full knowledge about the network yields better routing, that is not feasible in WSNs due to memory limitation and to the high traffic needed to collect the needed data about all the nodes in the network. As an effort to try to overcome this disadvantage, we are proposing in this paper aware diffusion routing protocol. Aware diffusion follows a semi-holistic approach by collecting data about the available paths and uses these data to enforce healthier paths using machine learning. The data gathering is done by adding a new stage called data collection stage. In this stage, the protocol designer can determine which parameters to collect then use these parameters in enforcing the best path according to certain criteria. In our implementation of this paradigm, we are collecting total energy on the path, lowest energy level on the path, and hop count. Again, the data collected is designer and application specific. The collected data will be used to compare available paths using non-incremental learning, and the outcome will be preferring paths that meet the designer criteria. In our case, healthier and shorter paths are preferred, which will result in less power consumption, higher delivery rate, and longer network life since healthier and fewer nodes will be doing the work.","PeriodicalId":58712,"journal":{"name":"无线传感网络(英文)","volume":"08 1","pages":"37-49"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线传感网络(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/WSN.2016.83004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Routing is a challenging task in Wireless Sensor Networks (WSNs) due to the limitation in energy and hardware capabilities in WSN nodes. This challenge prompted researchers to develop routing protocols that satisfy WSNs needs. The main design objectives are reliable delivery, low energy consumption, and prolonging network lifetime. In WSNs, routing is based on local information among neighboring nodes. Routing decisions are made locally; each node will select the next hop without any clue about the other nodes on the path. Although a full knowledge about the network yields better routing, that is not feasible in WSNs due to memory limitation and to the high traffic needed to collect the needed data about all the nodes in the network. As an effort to try to overcome this disadvantage, we are proposing in this paper aware diffusion routing protocol. Aware diffusion follows a semi-holistic approach by collecting data about the available paths and uses these data to enforce healthier paths using machine learning. The data gathering is done by adding a new stage called data collection stage. In this stage, the protocol designer can determine which parameters to collect then use these parameters in enforcing the best path according to certain criteria. In our implementation of this paradigm, we are collecting total energy on the path, lowest energy level on the path, and hop count. Again, the data collected is designer and application specific. The collected data will be used to compare available paths using non-incremental learning, and the outcome will be preferring paths that meet the designer criteria. In our case, healthier and shorter paths are preferred, which will result in less power consumption, higher delivery rate, and longer network life since healthier and fewer nodes will be doing the work.