Effect of Post-Weld Heat-Treatment on Corrosion and Microstructure Properties of Electric Arc Welded Mild Steels

IF 1.1 Q4 ELECTROCHEMISTRY Portugaliae Electrochimica Acta Pub Date : 2023-01-01 DOI:10.4152/pea.2023410104
O. Ajide, O. Anifalaje, I. Akande, al et
{"title":"Effect of Post-Weld Heat-Treatment on Corrosion and Microstructure Properties of Electric Arc Welded Mild Steels","authors":"O. Ajide, O. Anifalaje, I. Akande, al et","doi":"10.4152/pea.2023410104","DOIUrl":null,"url":null,"abstract":"Welding has been an incredibly important process used to join metals in several industrial applications, such as manufacturing, construction, automotive and aerospace sectors. It has been reported that welded joints sometimes exhibit poor corrosion resistance, due to the changes in the weld surface or HAZ chemical composition, residual stress and metallurgical structure. Therefore, there is a need to enhance welds corrosion resistance and microstructure properties through PWHT. In this study, PWHTs effect on the corrosion and microstructure properties of two MSs, SAE 1015 and 1010, which were fused by electric metal arc welding, was examined. The MS samples, with different chemical compositions, were cut to the desired dimensions, separately welded and, thereafter, subjected to PWHT, at 650, 750, 850 and 950 ºC, for 1 h. The corrosion and microstructure properties of the PWHT MS samples immersed in 3.5 wt.% NaCl were then investigated, using PDP and SEM, respectively. For the PWHT SAE 1015 and 1010 MS samples, the lowest CR values were 34.240 and 35.793 mm/year, at 650 ºC, while the highest were 90.16 and 60.10 mm/year, at 950 ºC, respectively. For the AW SAE 1015 and 1010 MS samples, the CR values were 107.54 and 118.09 mm/year, respectively. The SEM images revealed smaller grain sizes and boundaries and less porosity for PWHT MS samples at 650 ºC than for those at 950 ºC. Therefore, the first ones are recommended for advanced industrial applications.","PeriodicalId":20334,"journal":{"name":"Portugaliae Electrochimica Acta","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Electrochimica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4152/pea.2023410104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Welding has been an incredibly important process used to join metals in several industrial applications, such as manufacturing, construction, automotive and aerospace sectors. It has been reported that welded joints sometimes exhibit poor corrosion resistance, due to the changes in the weld surface or HAZ chemical composition, residual stress and metallurgical structure. Therefore, there is a need to enhance welds corrosion resistance and microstructure properties through PWHT. In this study, PWHTs effect on the corrosion and microstructure properties of two MSs, SAE 1015 and 1010, which were fused by electric metal arc welding, was examined. The MS samples, with different chemical compositions, were cut to the desired dimensions, separately welded and, thereafter, subjected to PWHT, at 650, 750, 850 and 950 ºC, for 1 h. The corrosion and microstructure properties of the PWHT MS samples immersed in 3.5 wt.% NaCl were then investigated, using PDP and SEM, respectively. For the PWHT SAE 1015 and 1010 MS samples, the lowest CR values were 34.240 and 35.793 mm/year, at 650 ºC, while the highest were 90.16 and 60.10 mm/year, at 950 ºC, respectively. For the AW SAE 1015 and 1010 MS samples, the CR values were 107.54 and 118.09 mm/year, respectively. The SEM images revealed smaller grain sizes and boundaries and less porosity for PWHT MS samples at 650 ºC than for those at 950 ºC. Therefore, the first ones are recommended for advanced industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
焊后热处理对电弧焊低碳钢腐蚀及组织性能的影响
焊接一直是一个非常重要的过程,用于连接金属在几个工业应用,如制造业,建筑业,汽车和航空航天部门。据报道,由于焊缝表面或热影响区化学成分、残余应力和金相组织的变化,焊接接头有时表现出较差的耐腐蚀性。因此,需要通过PWHT来提高焊缝的耐蚀性和显微组织性能。研究了PWHTs对金属电弧焊两种MSs (sae1015和sae1010)的腐蚀和组织性能的影响。将不同化学成分的质谱样品切割成所需尺寸,分别焊接,然后在650、750、850和950℃下进行PWHT处理1小时。然后分别使用PDP和SEM研究PWHT质谱样品在3.5 wt.% NaCl中浸泡的腐蚀和微观组织性能。PWHT SAE 1015和1010 MS样品在650℃时CR值最低,分别为34.240和35.793 mm/年,在950℃时CR值最高,分别为90.16和60.10 mm/年。对于aaw SAE 1015和1010 MS样品,CR值分别为107.54和118.09 mm/年。SEM图像显示,650℃下的PWHT MS样品比950℃下的样品晶粒尺寸和边界更小,孔隙率更低。因此,推荐第一种用于高级工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
16.70%
发文量
17
期刊介绍: Portugaliae Electrochimica Acta is a bi-monthly Journal published by the Portuguese Electrochemical Society since 1983. Portugaliae Electrochimica Acta publishes original papers, brief communications, reviews and letters concerned with every aspect of theory and practice of electrochemistry, as well as articles in which topics on history, science policy, education, etc. in the electrochemical field (teaching or research) may be discussed.
期刊最新文献
Anodic Treatment of Ni-Cu Alloy in a Deep Eutectic Solvent to Improve Electrocatalytic Activity in the Hydrogen Evolution Reaction Corrosion Resistance, Electrochemical and Surface Morphology Studies of Mild Steel in a Sulfuric Acid Medium by using Dibutyl Sulphide Recovery of Strategic Metals from Tungsten Carbide-Cobalt Bonded Waste by Electrochemical Processing Stainless 37 Steel Corrosion Inhibition in a Hydrochloric Acid Solution with Senggani (Melastoma Candidum D. Don) Leaf Extract Tribological Behavior of Inconel 718 Nickel-Based Super Alloy Doped with Graphene Nanoplatelets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1