Resistivity Stability of Ga Doped ZnO Thin Films with Heat Treatment in Air and Oxygen Atmospheres

T. Rao, M. Kumar
{"title":"Resistivity Stability of Ga Doped ZnO Thin Films with Heat Treatment in Air and Oxygen Atmospheres","authors":"T. Rao, M. Kumar","doi":"10.4236/JCPT.2012.22010","DOIUrl":null,"url":null,"abstract":"The effect of annealing in air and oxygen on structural, electrical and optical properties of gallium doped ZnO thin films was investigated. The X-ray diffraction patterns showed that the films were highly preferentially oriented along (002) plane. After the heat treatment in air and oxygen environments, the intensity of (002) peak was apparently improved. It was found that heat treatment in air atmospheres lead to increase in surface roughness of the film. The GZO films annealed in oxygen at 673 K exhibited low resistivity of 4.21 × 10–3 Ω.cm, while the resistivity of film annealed in air showed a slightly higher value of 7.14 × 10–3 Ω.cm. In addition to this, all films have good optical transmittance about 80% in the visible region. It is found from the photoluminescence studies that the broad visible emissions in GZO films originated from the intrinsic shallow traps (VZn) and deep level vacancies (ZZi, OZn and Vo)","PeriodicalId":64440,"journal":{"name":"结晶过程及技术期刊(英文)","volume":"02 1","pages":"72-79"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结晶过程及技术期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/JCPT.2012.22010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

The effect of annealing in air and oxygen on structural, electrical and optical properties of gallium doped ZnO thin films was investigated. The X-ray diffraction patterns showed that the films were highly preferentially oriented along (002) plane. After the heat treatment in air and oxygen environments, the intensity of (002) peak was apparently improved. It was found that heat treatment in air atmospheres lead to increase in surface roughness of the film. The GZO films annealed in oxygen at 673 K exhibited low resistivity of 4.21 × 10–3 Ω.cm, while the resistivity of film annealed in air showed a slightly higher value of 7.14 × 10–3 Ω.cm. In addition to this, all films have good optical transmittance about 80% in the visible region. It is found from the photoluminescence studies that the broad visible emissions in GZO films originated from the intrinsic shallow traps (VZn) and deep level vacancies (ZZi, OZn and Vo)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ga掺杂ZnO薄膜在空气和氧气环境中热处理的电阻率稳定性
研究了在空气和氧气中退火对掺镓ZnO薄膜结构、电学和光学性能的影响。x射线衍射图表明,薄膜沿(002)平面高度优先取向。在空气和氧气环境下热处理后,(002)峰强度明显提高。结果表明,在空气中热处理可使膜的表面粗糙度增大。在673 K氧中退火的GZO薄膜的电阻率为4.21 × 10-3 Ω。而在空气中退火的薄膜的电阻率略高,为7.14 × 10-3 Ω.cm。除此之外,所有薄膜在可见光区都有良好的透光率,约为80%。从光致发光研究中发现,GZO薄膜的宽可见发射源于本征浅阱(VZn)和深能级空位(ZZi, OZn和Vo)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
71
期刊最新文献
Coordination Polymer of Cobalt (ΙΙ) Nitrate with Imidazole: Synthesis, Properties and Crystal Structure Synthesis, Characterization and Crystal Structures of Zwitterionic Triazolato Complexes by Reaction of a Ruthenium Azido Complex with Excess Ethyl Propiolate Real-Time Characterization of Crystal Shape and Size Distribution Based on Moving Window and 3D Imaging in a Stirred Tank Application of Single Scan Differential Scanning Calorimetry Technique for Determination of Kinetic Parameters of Crystallisation in Se-Sb-Ag Improved Efficiency of ZnO and Ge Purification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1