Plant growth promoting bacteria enhances photosynthesis, nodulation and root system architecture in lentil under lead toxicity

IF 0.7 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Central European Agriculture Pub Date : 2022-01-01 DOI:10.5513/jcea01/23.3.3577
M. Erman, F. Çığ, F. Ceritoglu, M. Ceritoglu
{"title":"Plant growth promoting bacteria enhances photosynthesis, nodulation and root system architecture in lentil under lead toxicity","authors":"M. Erman, F. Çığ, F. Ceritoglu, M. Ceritoglu","doi":"10.5513/jcea01/23.3.3577","DOIUrl":null,"url":null,"abstract":"The usage of plant growth-promoting bacteria (PGPB) in mitigation of harmful effects of lead (Pb) toxicity in plants and bioremediation of it from soils is a sustainable, effective and low-cost strategy. The experiment was laid out to investigate the role of PGPB on morphological and physiological growth, root system architecture and nodulation of lentil under Pb stress. The experiment was conducted according to completely randomized factorial design with four replications at the laboratory of the Field Crops Department, Siirt University, Siirt in 2022. The four Pb levels and three bacterial inoculations were used in the experiment. Plant height, seedling fresh weight, root fresh weight, seedling dry weight, root dry weight, total chlorophyll content, taproot length, number of lateral roots, total root length and number of nodule varied between 15.7-25.9 cm, 0.123-0.235 g, 0.019-0.092 g, 0.0104-0.0326 g, 0.0076-0.0146 g, 27.9-47.2%, 8.9-19.2 cm, 4.00-14.67, 17.6-44.8 cm and 1.37-10.63, respectively. Bio-priming with PGPB containing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity increased dry matter accumulation up to 56.1% and 22.9% in shoots and roots, respectively. Chlorophyll content enhanced up to 17.9% compared with control application. Besides, root system architecture and nodule formation were improved by bio-priming both under stress and non-stress conditions. Bio-priming with PGPB may be a sustainable solution to mitigate","PeriodicalId":51685,"journal":{"name":"Journal of Central European Agriculture","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central European Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5513/jcea01/23.3.3577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 2

Abstract

The usage of plant growth-promoting bacteria (PGPB) in mitigation of harmful effects of lead (Pb) toxicity in plants and bioremediation of it from soils is a sustainable, effective and low-cost strategy. The experiment was laid out to investigate the role of PGPB on morphological and physiological growth, root system architecture and nodulation of lentil under Pb stress. The experiment was conducted according to completely randomized factorial design with four replications at the laboratory of the Field Crops Department, Siirt University, Siirt in 2022. The four Pb levels and three bacterial inoculations were used in the experiment. Plant height, seedling fresh weight, root fresh weight, seedling dry weight, root dry weight, total chlorophyll content, taproot length, number of lateral roots, total root length and number of nodule varied between 15.7-25.9 cm, 0.123-0.235 g, 0.019-0.092 g, 0.0104-0.0326 g, 0.0076-0.0146 g, 27.9-47.2%, 8.9-19.2 cm, 4.00-14.67, 17.6-44.8 cm and 1.37-10.63, respectively. Bio-priming with PGPB containing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity increased dry matter accumulation up to 56.1% and 22.9% in shoots and roots, respectively. Chlorophyll content enhanced up to 17.9% compared with control application. Besides, root system architecture and nodule formation were improved by bio-priming both under stress and non-stress conditions. Bio-priming with PGPB may be a sustainable solution to mitigate
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物生长促进菌对铅中毒小扁豆光合作用、结瘤和根系结构的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Central European Agriculture
Journal of Central European Agriculture AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
1.40
自引率
14.30%
发文量
46
审稿时长
50 weeks
期刊介绍: - General agriculture - Animal science - Plant science - Environment in relation to agricultural production, land use and wildlife management - Agricultural economics and rural development
期刊最新文献
Efficacy of anti-transpiration on yield and quality of sugar beet subjected to water stress The effect of laccase enzyme addition to soft Syrian wheat flour or blending with durum flour on the rheological properties of dough Metabolism and utilisation of non-protein nitrogen compounds in ruminants: a review Common bean (Phaseolus vulgaris L.) gas exchange capacity under nutrient deficiency Association study between g.16024A>G polymorphism of the FASN gene and milk production of Holstein cattle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1