{"title":"Evaluating Forest Vegetation Simulator predictions for southern Appalachian upland hardwoods with a modified mortality model","authors":"P. Radtke, Nathan Herring, D. Loftis, C. Keyser","doi":"10.5849/SJAF.10-017","DOIUrl":null,"url":null,"abstract":"Prediction accuracy for projected basal area and trees per acre was assessed for the growth and yield model of the Forest Vegetation Simulator Southern Variant (FVS-Sn). Data for comparison with FVS-Sn predictions were compiled from a collection of n 1,780 permanent inventory plots from mixed-species upland hardwood forests in the Southern Appalachian Mountains. Over a 5-year projection interval, baseline FVS-Sn predictions fell within 15% of observed values in over 88% of the test plots. Several modifications to FVS-Sn were pursued, including a refitting of the background mortality equation by logistic regression. Following the modifications, FVS-Sn accuracy statistics increased to 91 and 94% for basal area and trees per acre, respectively. In plots with high initial stand densities, notable gains in accuracy were achieved by relaxing thresholds that activated a density-dependent mortality algorithm in FVS-Sn. Detailed accuracy results for forest types of the region were generated. Twenty-five-year projection results show size-density trajectories consistent with the concept of maximum stand density index.","PeriodicalId":51154,"journal":{"name":"Southern Journal of Applied Forestry","volume":"36 1","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5849/SJAF.10-017","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Southern Journal of Applied Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5849/SJAF.10-017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Prediction accuracy for projected basal area and trees per acre was assessed for the growth and yield model of the Forest Vegetation Simulator Southern Variant (FVS-Sn). Data for comparison with FVS-Sn predictions were compiled from a collection of n 1,780 permanent inventory plots from mixed-species upland hardwood forests in the Southern Appalachian Mountains. Over a 5-year projection interval, baseline FVS-Sn predictions fell within 15% of observed values in over 88% of the test plots. Several modifications to FVS-Sn were pursued, including a refitting of the background mortality equation by logistic regression. Following the modifications, FVS-Sn accuracy statistics increased to 91 and 94% for basal area and trees per acre, respectively. In plots with high initial stand densities, notable gains in accuracy were achieved by relaxing thresholds that activated a density-dependent mortality algorithm in FVS-Sn. Detailed accuracy results for forest types of the region were generated. Twenty-five-year projection results show size-density trajectories consistent with the concept of maximum stand density index.