A comprehensive in silico prediction of the most deleterious missense variants in the bovine LEP gene

Q3 Agricultural and Biological Sciences BioTechnologia Pub Date : 2019-01-01 DOI:10.5114/bta.2019.90244
M. Al-Shuhaib
{"title":"A comprehensive in silico prediction of the most deleterious missense variants in the bovine LEP gene","authors":"M. Al-Shuhaib","doi":"10.5114/bta.2019.90244","DOIUrl":null,"url":null,"abstract":"Leptin is a versatile hormone involved in many biological functions, including controlling body weight, energy homeostasis, reproduction, and immune function. Though exhaustive studies were performed on the bovine LEP gene, no efforts have been made to comprehensively and systematically analyze single nucleotide polymorphisms (SNPs) in its coding sequence. The present study was conducted to identify the most deleterious nonsynonymous SNPs (nsSNPs) of the bovine LEP gene. SNPs retrieved from the dbSNP database were investigated using various computational tools, including SIFT, PolyPhen-2, PANTHER, PROVEAN, SNAP2, I-Mutant2, mCSM, SDM, DUET, Cobalt, SPPIDER, ConSurf, and MutPred. A total of 28 nsSNPs were considered for the present study. Only 4 nsSNPs, namely, R66M, D186G, C191S, and C191G were found to be deleterious by all the used common nsSNP prediction tools and affected leptin protein structure, function, and biological stability. These variants were located in very highly conserved positions, and thus mutations in these amino acid positions have deleterious evolutionary consequences. The findings of the present study proved that R66M, D186G, C191S, and C191G nsSNPs have the most deleterious consequences on both the structure and the function of bovine leptin, with a special emphasis on the remarkable effects of the last two nsSNPs on the breakage of the disulfide linkage which may lead to a variety of deleterious consequences of this disturbed three-dimensional structure on bovine life and performance. This study provides the first comprehensive computation of the damaging effects of nsSNPs on leptin in bovines.","PeriodicalId":8999,"journal":{"name":"BioTechnologia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechnologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/bta.2019.90244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 14

Abstract

Leptin is a versatile hormone involved in many biological functions, including controlling body weight, energy homeostasis, reproduction, and immune function. Though exhaustive studies were performed on the bovine LEP gene, no efforts have been made to comprehensively and systematically analyze single nucleotide polymorphisms (SNPs) in its coding sequence. The present study was conducted to identify the most deleterious nonsynonymous SNPs (nsSNPs) of the bovine LEP gene. SNPs retrieved from the dbSNP database were investigated using various computational tools, including SIFT, PolyPhen-2, PANTHER, PROVEAN, SNAP2, I-Mutant2, mCSM, SDM, DUET, Cobalt, SPPIDER, ConSurf, and MutPred. A total of 28 nsSNPs were considered for the present study. Only 4 nsSNPs, namely, R66M, D186G, C191S, and C191G were found to be deleterious by all the used common nsSNP prediction tools and affected leptin protein structure, function, and biological stability. These variants were located in very highly conserved positions, and thus mutations in these amino acid positions have deleterious evolutionary consequences. The findings of the present study proved that R66M, D186G, C191S, and C191G nsSNPs have the most deleterious consequences on both the structure and the function of bovine leptin, with a special emphasis on the remarkable effects of the last two nsSNPs on the breakage of the disulfide linkage which may lead to a variety of deleterious consequences of this disturbed three-dimensional structure on bovine life and performance. This study provides the first comprehensive computation of the damaging effects of nsSNPs on leptin in bovines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牛LEP基因中最有害的错义变异的综合计算机预测
瘦素是一种多用途的激素,参与许多生物功能,包括控制体重、能量平衡、生殖和免疫功能。虽然对牛LEP基因进行了详尽的研究,但尚未对其编码序列的单核苷酸多态性(snp)进行全面系统的分析。本研究旨在鉴定牛LEP基因中最有害的非同义snp (nssnp)。使用SIFT、polyphen2、PANTHER、PROVEAN、SNAP2、I-Mutant2、mCSM、SDM、DUET、Cobalt、spider、ConSurf和MutPred等多种计算工具对从dbSNP数据库中检索到的snp进行了研究。本研究共考虑了28个nssnp。所有常用的nsSNP预测工具均发现只有R66M、D186G、C191S和C191G 4个nsSNP是有害的,影响瘦素蛋白的结构、功能和生物稳定性。这些变异位于非常高度保守的位置,因此这些氨基酸位置的突变具有有害的进化后果。本研究结果证明,R66M、D186G、C191S和C191G非单核苷酸多态性对牛瘦素的结构和功能的影响最大,并特别强调了后两种非单核苷酸多态性对二硫键断裂的显著影响,这种破坏的三维结构可能导致对牛的生命和生产性能的各种有害后果。本研究首次全面计算了nsSNPs对牛瘦素的破坏作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioTechnologia
BioTechnologia Agricultural and Biological Sciences-Plant Science
CiteScore
1.60
自引率
0.00%
发文量
8
审稿时长
8 weeks
期刊介绍: BIOTECHNOLOGIA – a high standard, peer-reviewed, quarterly magazine, providing a medium for the rapid publication of research reports and review articles on novel and innovative aspects of biotechnology, computational biology and bionanotechnology.
期刊最新文献
The utilization of microbes for sustainable food production. Optimization of mycelial growth and cultivation of wild Ganoderma sinense. Mycoremediation of anthraquinone dyes from textile industries: a mini-review. Influence of the autochthonous cellulolytic bacteria on the domestic compost process improvement. Regulation of GMO field trials in the EU and new genomic techniques: will the planned reform facilitate experimenting with gene-edited plants?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1