Stacking Approach to Temporal Relation Classification with Temporal Inference

Q4 Computer Science Journal of Information Processing Pub Date : 2015-06-16 DOI:10.5715/JNLP.22.171
N. Laokulrat, Makoto Miwa, Yoshimasa Tsuruoka
{"title":"Stacking Approach to Temporal Relation Classification with Temporal Inference","authors":"N. Laokulrat, Makoto Miwa, Yoshimasa Tsuruoka","doi":"10.5715/JNLP.22.171","DOIUrl":null,"url":null,"abstract":"Traditional machine-learning-based approaches to temporal relation classification use only local features, i.e., those relating to a specific pair of temporal entities (events and temporal expressions), and thus fail to incorporate useful information that could be inferred from nearby entities. In this paper, we use timegraphs and stacked learning to perform temporal inference for classification in the temporal relation classification task. In our model, we predict a temporal relation by considering the consistency of possible relations between nearby entities. Performing 10-fold cross-validation on the Timebank corpus, we achieve an F1 score of 60.25% using a graph-based evaluation, which is 0.90 percentage points higher than that of the local approach, outperforming other proposed systems.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"54 1","pages":"171-196"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.22.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

Abstract

Traditional machine-learning-based approaches to temporal relation classification use only local features, i.e., those relating to a specific pair of temporal entities (events and temporal expressions), and thus fail to incorporate useful information that could be inferred from nearby entities. In this paper, we use timegraphs and stacked learning to perform temporal inference for classification in the temporal relation classification task. In our model, we predict a temporal relation by considering the consistency of possible relations between nearby entities. Performing 10-fold cross-validation on the Timebank corpus, we achieve an F1 score of 60.25% using a graph-based evaluation, which is 0.90 percentage points higher than that of the local approach, outperforming other proposed systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间推理的时间关系分类的叠加方法
传统的基于机器学习的时间关系分类方法只使用局部特征,即与特定的时间实体(事件和时间表达式)对相关的特征,因此无法包含可以从附近实体推断出的有用信息。在时间关系分类任务中,我们使用时间图和堆叠学习来进行时间推理进行分类。在我们的模型中,我们通过考虑附近实体之间可能关系的一致性来预测时间关系。在Timebank语料库上执行10倍交叉验证,我们使用基于图的评估获得了60.25%的F1分数,比本地方法高出0.90个百分点,优于其他提出的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Container-native Managed Data Sharing Editor's Message to Special Issue of Computer Security Technologies for Secure Cyberspace Understanding the Inconsistencies in the Permissions Mechanism of Web Browsers An Analysis of Susceptibility to Phishing via Business Chat through Online Survey Analysis and Consideration of Detection Methods to Prevent Fraudulent Access by Utilizing Attribute Information and the Access Log History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1