Further study on testing the equality of response rates under Dallal’s model

IF 0.7 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics and Its Interface Pub Date : 2022-01-01 DOI:10.4310/21-SII683
Yafei Chen, Zhiming Li, Changxing Ma
{"title":"Further study on testing the equality of response rates under Dallal’s model","authors":"Yafei Chen, Zhiming Li, Changxing Ma","doi":"10.4310/21-SII683","DOIUrl":null,"url":null,"abstract":"Paired binary data naturally arises when paired body parts are investigated in clinical trials. In this paper, we will further study whether the response rates of g ( g ≥ 2) groups are equal under Dallal’s model and propose eight test statistics ( T aL , T aW , T aSC , T aR , T bL , T bW , T bSC and T bR ). Some expressions of these tests are derived. The simulation results show that likelihood ratio and Wald-type tests are not robust with respect to empirical type I error rates (TIEs). The score and Ronser-type tests can produce satisfactory TIEs and power, and therefore are recommended. A real example is given to illustrate the proposed methods.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"15 1","pages":"115-126"},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/21-SII683","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Paired binary data naturally arises when paired body parts are investigated in clinical trials. In this paper, we will further study whether the response rates of g ( g ≥ 2) groups are equal under Dallal’s model and propose eight test statistics ( T aL , T aW , T aSC , T aR , T bL , T bW , T bSC and T bR ). Some expressions of these tests are derived. The simulation results show that likelihood ratio and Wald-type tests are not robust with respect to empirical type I error rates (TIEs). The score and Ronser-type tests can produce satisfactory TIEs and power, and therefore are recommended. A real example is given to illustrate the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dallal模型下回复率相等性检验的进一步研究
配对二值数据是在临床试验中研究成对身体部位时自然产生的。本文将进一步研究g (g≥2)组在Dallal模型下的反应率是否相等,并提出8个检验统计量(T aL、T aW、T aSC、T aR、T bL、T bW、T bSC和T bR)。推导了这些试验的一些表达式。仿真结果表明,似然比和wald型检验对于经验I型错误率(TIEs)不具有鲁棒性。score和ronser型测试可以产生令人满意的TIEs和power,因此推荐使用。最后给出了一个实例来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
期刊最新文献
Variable selection for doubly robust causal inference. Estimating extreme value index by subsampling for massive datasets with heavy-tailed distributions Default Bayesian testing for the zero-inflated Poisson distribution A consistent specification test for functional linear quantile regression models Variable selection and estimation for high-dimensional partially linear spatial autoregressive models with measurement errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1