The covariability of sea surface temperature and MAM rainfall on East Africa using singular value decomposition analysis

IF 1.2 Q3 GEOGRAPHY Geographica Pannonica Pub Date : 2020-01-01 DOI:10.5937/GP24-27577
Makula Kisesa, M. Umutoni, L. Japheth, E. Lipiki, Laban Lameck Kebacho, S. Tilwebwa
{"title":"The covariability of sea surface temperature and MAM rainfall on East Africa using singular value decomposition analysis","authors":"Makula Kisesa, M. Umutoni, L. Japheth, E. Lipiki, Laban Lameck Kebacho, S. Tilwebwa","doi":"10.5937/GP24-27577","DOIUrl":null,"url":null,"abstract":"The study assesses the covariability of Sea Surface Temperature (SST) and March to May (MAM) rainfall variability on East Africa (EA) from 1981 to 2018. Singular Value Decomposition (SVD) analysis reveals the significant influence of SST anomalies on MAM rainfall, with covariability of 91%, 88.61%, and 82.9% for Indian, Atlantic, and the Pacific Ocean, respectively. The Indian Ocean explains the variability of rainfall to the large extent followed by the Atlantic Ocean and the Pacific Ocean. The rainfall patterns over the EA correspond to SST variability over the western, central, and Eastern Indian Ocean. Likewise, the variability of SST anomalies was observed over the central, south, and North of the Atlantic Ocean while the Pacific Ocean captured the El Nino Modoki (ENSO) like pattern in the SVD1 (SVD2). The heterogeneous correlation of Indian SST anomalies and rainfall over EA of the first (second) principal component (PC) shows a positive correlation over much of the domain (central region). The SST anomalies over the Pacific Ocean show higher correlation values with the rainfall over much of the study domain except over the southwestern highland and southern region of Tanzania. Over the Atlantic Ocean, the correlation result shows the patterns of positive (negative) values over the northern (southern) part for PC1, while PC2 depicts negative correlation values over much of the Ocean. SST anomalies over the Indian (Atlantic) Ocean are highly correlated with MAM rainfall when SST leads by 1(7) month(s). The Pacific Ocean shows a weak (strong) correlation across all (zero) lead seasons.","PeriodicalId":44646,"journal":{"name":"Geographica Pannonica","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographica Pannonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/GP24-27577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 5

Abstract

The study assesses the covariability of Sea Surface Temperature (SST) and March to May (MAM) rainfall variability on East Africa (EA) from 1981 to 2018. Singular Value Decomposition (SVD) analysis reveals the significant influence of SST anomalies on MAM rainfall, with covariability of 91%, 88.61%, and 82.9% for Indian, Atlantic, and the Pacific Ocean, respectively. The Indian Ocean explains the variability of rainfall to the large extent followed by the Atlantic Ocean and the Pacific Ocean. The rainfall patterns over the EA correspond to SST variability over the western, central, and Eastern Indian Ocean. Likewise, the variability of SST anomalies was observed over the central, south, and North of the Atlantic Ocean while the Pacific Ocean captured the El Nino Modoki (ENSO) like pattern in the SVD1 (SVD2). The heterogeneous correlation of Indian SST anomalies and rainfall over EA of the first (second) principal component (PC) shows a positive correlation over much of the domain (central region). The SST anomalies over the Pacific Ocean show higher correlation values with the rainfall over much of the study domain except over the southwestern highland and southern region of Tanzania. Over the Atlantic Ocean, the correlation result shows the patterns of positive (negative) values over the northern (southern) part for PC1, while PC2 depicts negative correlation values over much of the Ocean. SST anomalies over the Indian (Atlantic) Ocean are highly correlated with MAM rainfall when SST leads by 1(7) month(s). The Pacific Ocean shows a weak (strong) correlation across all (zero) lead seasons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用奇异值分解分析东非海温与MAM降水的协变性
本研究评估了1981 - 2018年东非海温(SST)和3 - 5月(MAM)降水变率的协变性。奇异值分解(SVD)分析表明,海温异常对MAM降水的影响显著,印度洋、大西洋和太平洋的协变率分别为91%、88.61%和82.9%。印度洋在很大程度上解释了降雨量的变化,其次是大西洋和太平洋。东亚地区的降水模式与印度洋西部、中部和东部的海温变化相对应。同样,大西洋中部、南部和北部的海温异常也存在变率,而太平洋在SVD1 (SVD2)中表现出类似El Nino Modoki (ENSO)的模式。印度海温异常与东亚地区第一(第二)主成分(PC)降水的非均质相关在大部分区域(中部)呈正相关。除西南高原和坦桑尼亚南部地区外,太平洋海温异常与降水的相关值较高。在大西洋上空,PC1的相关结果在北(南)部分呈现正(负)相关,而PC2在大部分海域呈现负相关。当海温领先1(7)个月时,印度洋(大西洋)海温异常与MAM降水高度相关。太平洋在所有(零)铅季节表现出弱(强)相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
11.10%
发文量
8
审稿时长
4 weeks
期刊最新文献
Networks, agriculture and geography: How business connections of agricultural enterprises shape the connection of settlements in Western Hungary Thermal resistance of clothing in human biometeorological models Excess mortality and Covid-19 deaths: Preliminary data from Serbia and comparison with European experience Flood hazard risk assessment based on multi-criteria spatial analysis GIS as input for spatial planning policies in Tegal Regency, Indonesia Scientometric analysis-based review of drought indices for assessment and monitoring of drought
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1