Federico Albanese, Esteban Feuerstein, Gabriel Kessler, Juan Manuel Ortiz de Zárate
{"title":"Aprendizaje automático para el análisis cross-plataforma de la comunicación política: Gobierno y oposición argentinos en Facebook, Instagram y Twitter","authors":"Federico Albanese, Esteban Feuerstein, Gabriel Kessler, Juan Manuel Ortiz de Zárate","doi":"10.7764/cdi.55.52631","DOIUrl":null,"url":null,"abstract":"Este artículo indaga acerca de la comunicación política en las distintas plataformas, aplicando métodos de las ciencias de datos para analizar similitudes y diferencias entre las publicaciones en Facebook, Instagram y Twitter de 50 políticos argentinos durante 2020. Es un estudio pionero en la región entre los trabajos cross-plataformas y sus objetivos son heurísticos y metodológicos. En relación a lo primero, se demuestra que hay estrategias diferentes según las plataformas: Twitter es el terreno de controversias e interpelaciones entre los políticos y allí la toxicidad es recompensada, mientras que en Facebook e Instagram los políticos despliegan los tópicos en los que parecen considerarse más fuertes. Así, el estudio cross-plataformas permite observar que aun en un contexto polarizado como el argentino existen temas comunes y sin polémicas entre sectores opuestos. En lo metodológico, utilizamos métodos novedosos e implementamos un reciente algoritmo de detección de tópicos, aplicamos análisis de sentimiento con el objetivo de entender si son textos positivos o negativos, y redes neuronales profundas para medir la toxicidad, entre otros. El artículo pone a disposición la caja de herramientas desarrolladas durante la investigación, las que pueden ser de utilidad para trabajar corpus de texto de gran magnitud.","PeriodicalId":44666,"journal":{"name":"Cuadernos Info","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cuadernos Info","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7764/cdi.55.52631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0
Abstract
Este artículo indaga acerca de la comunicación política en las distintas plataformas, aplicando métodos de las ciencias de datos para analizar similitudes y diferencias entre las publicaciones en Facebook, Instagram y Twitter de 50 políticos argentinos durante 2020. Es un estudio pionero en la región entre los trabajos cross-plataformas y sus objetivos son heurísticos y metodológicos. En relación a lo primero, se demuestra que hay estrategias diferentes según las plataformas: Twitter es el terreno de controversias e interpelaciones entre los políticos y allí la toxicidad es recompensada, mientras que en Facebook e Instagram los políticos despliegan los tópicos en los que parecen considerarse más fuertes. Así, el estudio cross-plataformas permite observar que aun en un contexto polarizado como el argentino existen temas comunes y sin polémicas entre sectores opuestos. En lo metodológico, utilizamos métodos novedosos e implementamos un reciente algoritmo de detección de tópicos, aplicamos análisis de sentimiento con el objetivo de entender si son textos positivos o negativos, y redes neuronales profundas para medir la toxicidad, entre otros. El artículo pone a disposición la caja de herramientas desarrolladas durante la investigación, las que pueden ser de utilidad para trabajar corpus de texto de gran magnitud.