The effect of strength parameters on the seismic performance of an arch dam using an uncertainty model

IF 1.4 4区 工程技术 Revista de la Construccion Pub Date : 2021-01-01 DOI:10.7764/rdlc.20.3.602
M. Pasbani Khiavi, P. Ahmadi, R. Daneshfaraz
{"title":"The effect of strength parameters on the seismic performance of an arch dam using an uncertainty model","authors":"M. Pasbani Khiavi, P. Ahmadi, R. Daneshfaraz","doi":"10.7764/rdlc.20.3.602","DOIUrl":null,"url":null,"abstract":"Considering the importance of the effect of concrete arch dam body strength on their seismic performance, this research evaluated the effect of Young Modulus of both the body concrete and foundation as strength parameters and examines the responses to achieve the optimal body stiffness using probabilistic and uncertainty method. The ANSYS software was used to complete the finite element analysis of the dam-reservoir-foundation system and the Monte Carlo method, which is a new method for parametric study and sensitivity analysis, was used for uncertainty analysis. For seismic analysis, the horizontal and vertical components of Northridge, San Fernando and El Centro earthquakes are separately applied in 3d directions. The earthquake components were scaled to the maximum credible level of ground motion acceleration. The foundation rock is simulated using a massless foundation model and dam-reservoir-foundation interaction is considered for seismic analysis of system. The results show the effect of the modulus of elasticity of the concrete which is directly related to the stiffness of the system. The results indicate the effect of the dam body concrete stiffness on the responses. According to the design criteria, it is possible to investigate the safety status of the dam and select the optimal state in terms of structural strength for the model. However, in order to properly select the modulus of elasticity of the concrete of the dam body, it is necessary to consider the simultaneous effect of the stiffness of the foundation and to select the optimal value.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.20.3.602","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the importance of the effect of concrete arch dam body strength on their seismic performance, this research evaluated the effect of Young Modulus of both the body concrete and foundation as strength parameters and examines the responses to achieve the optimal body stiffness using probabilistic and uncertainty method. The ANSYS software was used to complete the finite element analysis of the dam-reservoir-foundation system and the Monte Carlo method, which is a new method for parametric study and sensitivity analysis, was used for uncertainty analysis. For seismic analysis, the horizontal and vertical components of Northridge, San Fernando and El Centro earthquakes are separately applied in 3d directions. The earthquake components were scaled to the maximum credible level of ground motion acceleration. The foundation rock is simulated using a massless foundation model and dam-reservoir-foundation interaction is considered for seismic analysis of system. The results show the effect of the modulus of elasticity of the concrete which is directly related to the stiffness of the system. The results indicate the effect of the dam body concrete stiffness on the responses. According to the design criteria, it is possible to investigate the safety status of the dam and select the optimal state in terms of structural strength for the model. However, in order to properly select the modulus of elasticity of the concrete of the dam body, it is necessary to consider the simultaneous effect of the stiffness of the foundation and to select the optimal value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用不确定模型研究了强度参数对拱坝抗震性能的影响
考虑到混凝土拱坝坝体强度对其抗震性能的重要影响,本研究评估了坝体混凝土和基础杨氏模量作为强度参数的影响,并采用概率和不确定性方法研究了实现最优坝体刚度的响应。采用ANSYS软件对坝-库-基系统进行有限元分析,采用蒙特卡罗方法进行不确定性分析,蒙特卡罗方法是一种新的参数化研究和灵敏度分析方法。在地震分析中,在三维方向上分别应用了北岭地震、圣费尔南多地震和埃尔森特罗地震的水平分量和垂直分量。地震分量被缩放到地面运动加速度的最大可信水平。采用无质量地基模型对基岩进行了模拟,并考虑了大坝-水库-地基的相互作用,对系统进行了地震分析。结果表明,混凝土弹性模量的影响与体系的刚度直接相关。结果表明,坝体混凝土刚度对响应有一定的影响。根据设计准则,可以研究大坝的安全状态,并根据结构强度选择模型的最佳状态。然而,为了合理选择坝体混凝土弹性模量,必须考虑基础刚度的同时作用,并选择最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de la Construccion
Revista de la Construccion 工程技术-工程:土木
CiteScore
2.30
自引率
21.40%
发文量
0
期刊介绍: The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges. OBJECTIVES The objectives of the Journal of Construction are: 1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.). 2. To provide professionals in the area with material for discussion to refresh and update their knowledge. 3. To disseminate new applied technologies in construction nationally and internationally. 4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.
期刊最新文献
Durability of concrete exposed to combined freeze-thaw, sulfate, and acid attacks after two years Effect of different ashes from biomass olive pomace on the mechanical and fire properties of gypsum-based materials Incorporating vegetal fibers for sustainable sandy soil Eco-efficient analysis of thermal regulations applied to thermal envelopes of a dwelling in Chile Durability performance of alkali-activated concretes exposed to sulfuric acid attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1