Physical and mechanical properties of C class fly ash based lightweight geopolymer mortar produced with expanded vermiculite aggregate

IF 1.4 4区 工程技术 Revista de la Construccion Pub Date : 2022-01-01 DOI:10.7764/rdlc.21.1.21
M. Kaya, F. Köksal
{"title":"Physical and mechanical properties of C class fly ash based lightweight geopolymer mortar produced with expanded vermiculite aggregate","authors":"M. Kaya, F. Köksal","doi":"10.7764/rdlc.21.1.21","DOIUrl":null,"url":null,"abstract":"This study presents the physical and the mechanical properties of C class fly ash (FA) based lightweight geopolymer mortars produced with expanded vermiculite (EV) aggregate. The FA was activated with NaOH containing 12%, 14% and 16% sodium by weight. The volumetric ratios of EV/FA in the samples were chosen as 2,4 and 6 in the study. The liquid/solid ratio 0.23, 0.26 and 0.29. Lightweight geopolymer mortar (LGM) samples were produced by mixing FA, EV, NaOH and water in a mixer. The samples placed in molds were exposed to activation temperature of 100°C for 24 hours in the oven. The samples taken out of the oven were demoulded and kept in air curing for 28 days at 20°C±2°C room temperature. After curing, unit weight, apparent porosity, water absorption ratio, ultrasonic pulse velocity (UPV), flexural strength and compressive strength tests were performed on the samples. In addition, the thermal conductivity coefficients of the samples were determined. As a result of the experiment, a compressive strength varying between 0.59 MPa and 3.81 MPa was obtained in lightweight geopolymers samples with a unit weight between 906 kg/m3 and 1477 kg/m3. Expanded vermiculite showed a good performance on thermal conductivity of LGMs and a decrease in thermal conductivity up to the 0.094 W/mK was observed.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.21.1.21","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This study presents the physical and the mechanical properties of C class fly ash (FA) based lightweight geopolymer mortars produced with expanded vermiculite (EV) aggregate. The FA was activated with NaOH containing 12%, 14% and 16% sodium by weight. The volumetric ratios of EV/FA in the samples were chosen as 2,4 and 6 in the study. The liquid/solid ratio 0.23, 0.26 and 0.29. Lightweight geopolymer mortar (LGM) samples were produced by mixing FA, EV, NaOH and water in a mixer. The samples placed in molds were exposed to activation temperature of 100°C for 24 hours in the oven. The samples taken out of the oven were demoulded and kept in air curing for 28 days at 20°C±2°C room temperature. After curing, unit weight, apparent porosity, water absorption ratio, ultrasonic pulse velocity (UPV), flexural strength and compressive strength tests were performed on the samples. In addition, the thermal conductivity coefficients of the samples were determined. As a result of the experiment, a compressive strength varying between 0.59 MPa and 3.81 MPa was obtained in lightweight geopolymers samples with a unit weight between 906 kg/m3 and 1477 kg/m3. Expanded vermiculite showed a good performance on thermal conductivity of LGMs and a decrease in thermal conductivity up to the 0.094 W/mK was observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膨胀蛭石骨料制备的C级粉煤灰轻质地聚合物砂浆的物理力学性能
研究了以膨胀蛭石(EV)骨料为原料制备的C级粉煤灰轻质地聚合物砂浆的物理力学性能。钠含量分别为12%、14%和16%的NaOH对FA进行了活化。本研究选取样品中EV/FA的体积比为2、4和6。液固比分别为0.23、0.26、0.29。采用FA、EV、NaOH和水混合法制备轻质地聚合物砂浆(LGM)样品。将样品置于模具中,在100°C的活化温度下在烘箱中暴露24小时。从烘箱中取出的样品脱模,在20°C±2°C室温下空气固化28天。固化后对试样进行了单位重量、表观孔隙率、吸水率、超声脉冲速度(UPV)、抗折强度、抗压强度等试验。测定了样品的导热系数。试验结果表明,单位重量在906 ~ 1477 kg/m3之间的轻质地聚合物样品的抗压强度在0.59 ~ 3.81 MPa之间。膨胀蛭石的导热性能较好,导热系数降低0.094 W/mK。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de la Construccion
Revista de la Construccion 工程技术-工程:土木
CiteScore
2.30
自引率
21.40%
发文量
0
期刊介绍: The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges. OBJECTIVES The objectives of the Journal of Construction are: 1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.). 2. To provide professionals in the area with material for discussion to refresh and update their knowledge. 3. To disseminate new applied technologies in construction nationally and internationally. 4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.
期刊最新文献
Durability of concrete exposed to combined freeze-thaw, sulfate, and acid attacks after two years Effect of different ashes from biomass olive pomace on the mechanical and fire properties of gypsum-based materials Incorporating vegetal fibers for sustainable sandy soil Eco-efficient analysis of thermal regulations applied to thermal envelopes of a dwelling in Chile Durability performance of alkali-activated concretes exposed to sulfuric acid attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1