Experimental evaluation of the usability of palm tree pruning waste (PTPW) as an alternative to geotextile

IF 1.4 4区 工程技术 Revista de la Construccion Pub Date : 2022-01-01 DOI:10.7764/rdlc.21.1.69
M. Öztürk, Y. Önal, G. Altay, Ebubekir Kaplan, C. Kayadelen
{"title":"Experimental evaluation of the usability of palm tree pruning waste (PTPW) as an alternative to geotextile","authors":"M. Öztürk, Y. Önal, G. Altay, Ebubekir Kaplan, C. Kayadelen","doi":"10.7764/rdlc.21.1.69","DOIUrl":null,"url":null,"abstract":"This paper focuses on serving twofold benefits for the environment by providing not only recycling of a waste material but also improving rutting performance of sand subgrade under cyclic traffic loads. In this context, a series of laboratory experiments have been conducted to benchmark the performance of commercially manufactured geotextile and palm tree pruning waste (PTPW) as soil improvement agents. Experimental results of the study were evaluated based on permanent (plastic), total, and elastic deformation, rut depth reduction (RDR), traffic benefit ratio (TBR), percentage of elastic deformation, and resilient modulus (MR). In the view of experimental results, geotextile and PTPW-reinforced sand subgrades demonstrated well performance in the sense of permanent and elastic deformations when compared to unreinforced case. It is also realized that the most satisfactory performance was obtained when geotextile or PTPW are located at a burial depth of both 50 mm and 100 mm. In that case, TBR values of geotextile and PTPW-reinforced subgrades were almost the same at 20 mm permanent deformation (i.e., 6.71 and 6.76, respectively). Furthermore, when the results were evaluated based on RDR, it is observed that geotextile and PTPW reinforcements reduced the rut depth at the rate of 49.31 % and 37.15 % at the end of 5000 load cycle, respectively.","PeriodicalId":54473,"journal":{"name":"Revista de la Construccion","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7764/rdlc.21.1.69","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper focuses on serving twofold benefits for the environment by providing not only recycling of a waste material but also improving rutting performance of sand subgrade under cyclic traffic loads. In this context, a series of laboratory experiments have been conducted to benchmark the performance of commercially manufactured geotextile and palm tree pruning waste (PTPW) as soil improvement agents. Experimental results of the study were evaluated based on permanent (plastic), total, and elastic deformation, rut depth reduction (RDR), traffic benefit ratio (TBR), percentage of elastic deformation, and resilient modulus (MR). In the view of experimental results, geotextile and PTPW-reinforced sand subgrades demonstrated well performance in the sense of permanent and elastic deformations when compared to unreinforced case. It is also realized that the most satisfactory performance was obtained when geotextile or PTPW are located at a burial depth of both 50 mm and 100 mm. In that case, TBR values of geotextile and PTPW-reinforced subgrades were almost the same at 20 mm permanent deformation (i.e., 6.71 and 6.76, respectively). Furthermore, when the results were evaluated based on RDR, it is observed that geotextile and PTPW reinforcements reduced the rut depth at the rate of 49.31 % and 37.15 % at the end of 5000 load cycle, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
棕榈树修剪废料(PTPW)作为土工布替代品的可用性实验评价
本文的重点是通过提供废物的回收利用和改善循环交通荷载下沙土路基的车辙性能,为环境提供双重效益。在这种情况下,进行了一系列的实验室实验,以衡量商业生产的土工布和棕榈树修剪废料(PTPW)作为土壤改良剂的性能。试验结果基于永久(塑性)、总变形和弹性变形、车辙深度减少(RDR)、交通效益比(TBR)、弹性变形百分比和弹性模量(MR)进行评估。试验结果表明,与未加筋的路基相比,土工布和ptpw加筋砂路基在永久变形和弹性变形方面表现出良好的性能。土工布或PTPW埋深分别为50mm和100mm时,其性能最理想。在这种情况下,土工布和ptpw加筋路基在20mm永久变形时的TBR值基本相同(分别为6.71和6.76)。此外,当基于RDR对结果进行评估时,发现在5000次荷载循环结束时,土工布和PTPW增强筋分别以49.31%和37.15%的速度减少了车辙深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de la Construccion
Revista de la Construccion 工程技术-工程:土木
CiteScore
2.30
自引率
21.40%
发文量
0
期刊介绍: The Journal of Construction is aimed at professionals, constructors, academics, researchers, companies, architects, engineers, and anyone who wishes to expand and update their knowledge about construction. We therefore invite all researchers, academics, and professionals to send their contributions for assessment and possible publication in this journal. The publications are free of publication charges. OBJECTIVES The objectives of the Journal of Construction are: 1. To disseminate new knowledge in all areas related to construction (Building, Civil Works, Materials, Business, Education, etc.). 2. To provide professionals in the area with material for discussion to refresh and update their knowledge. 3. To disseminate new applied technologies in construction nationally and internationally. 4. To provide national and foreign academics with an internationally endorsed medium in which to share their knowledge and debate the topics raised.
期刊最新文献
Durability of concrete exposed to combined freeze-thaw, sulfate, and acid attacks after two years Effect of different ashes from biomass olive pomace on the mechanical and fire properties of gypsum-based materials Incorporating vegetal fibers for sustainable sandy soil Eco-efficient analysis of thermal regulations applied to thermal envelopes of a dwelling in Chile Durability performance of alkali-activated concretes exposed to sulfuric acid attack
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1