The Effects of County-Level Socioeconomic and Healthcare Factors on Controlling COVID-19 in the Southern and Southeastern United States

Jackson Barth, Guanqing Cheng, Webb Williams, Ming Zhang, H. K. T. Ng
{"title":"The Effects of County-Level Socioeconomic and Healthcare Factors on Controlling COVID-19 in the Southern and Southeastern United States","authors":"Jackson Barth, Guanqing Cheng, Webb Williams, Ming Zhang, H. K. T. Ng","doi":"10.6339/23-jds1111","DOIUrl":null,"url":null,"abstract":"This paper aims to determine the effects of socioeconomic and healthcare factors on the performance of controlling COVID-19 in both the Southern and Southeastern United States. This analysis will provide government agencies with information to determine what communities need additional COVID-19 assistance, to identify counties that effectively control COVID-19, and to apply effective strategies on a broader scale. The statistical analysis uses data from 328 counties with a population of more than 65,000 from 13 states. We define a new response variable by considering infection and mortality rates to capture how well each county controls COVID-19. We collect 14 factors from the 2019 American Community Survey Single-Year Estimates and obtain county-level infection and mortality rates from USAfacts.org. We use the least absolute shrinkage and selection operator (LASSO) regression to fit a multiple linear regression model and develop an interactive system programmed in R shiny to deliver all results. The interactive system at https://asa-competition-smu.shinyapps.io/COVID19/ provides many options for users to explore our data, models, and results.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"405 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/23-jds1111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to determine the effects of socioeconomic and healthcare factors on the performance of controlling COVID-19 in both the Southern and Southeastern United States. This analysis will provide government agencies with information to determine what communities need additional COVID-19 assistance, to identify counties that effectively control COVID-19, and to apply effective strategies on a broader scale. The statistical analysis uses data from 328 counties with a population of more than 65,000 from 13 states. We define a new response variable by considering infection and mortality rates to capture how well each county controls COVID-19. We collect 14 factors from the 2019 American Community Survey Single-Year Estimates and obtain county-level infection and mortality rates from USAfacts.org. We use the least absolute shrinkage and selection operator (LASSO) regression to fit a multiple linear regression model and develop an interactive system programmed in R shiny to deliver all results. The interactive system at https://asa-competition-smu.shinyapps.io/COVID19/ provides many options for users to explore our data, models, and results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国南部和东南部县级社会经济和卫生保健因素对控制COVID-19的影响
本文旨在确定社会经济和医疗保健因素对美国南部和东南部控制COVID-19绩效的影响。这一分析将为政府机构提供信息,以确定哪些社区需要额外的COVID-19援助,确定有效控制COVID-19的县,并在更大范围内应用有效战略。统计分析使用了来自13个州的328个县的数据,这些县的人口超过6.5万人。我们通过考虑感染率和死亡率来定义一个新的响应变量,以捕捉每个国家控制COVID-19的情况。我们从2019年美国社区调查单年估算中收集了14个因素,并从USAfacts.org上获得了县级感染率和死亡率。我们使用最小绝对收缩和选择算子(LASSO)回归来拟合多元线性回归模型,并开发了一个用R shiny编程的交互式系统来提供所有结果。在https://asa-competition-smu.shinyapps.io/COVID19/上的交互系统为用户提供了许多选项来探索我们的数据、模型和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood Estimation for Shape-restricted Single-index Hazard Models. Central Posterior Envelopes for Bayesian Functional Principal Component Analysis. Optimal Physician Shared-Patient Networks and the Diffusion of Medical Technologies. Generating General Preferential Attachment Networks with R Package wdnet Identification of Optimal Combined Moderators for Time to Relapse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1