Yoo-Sup Lee, Ji-hoon Kim, M. Seo, K. Ryu, Eun-hee Kim, H. Won
{"title":"Oxidation-induced conformational change of Hsp33, monitored by NMR","authors":"Yoo-Sup Lee, Ji-hoon Kim, M. Seo, K. Ryu, Eun-hee Kim, H. Won","doi":"10.6564/JKMRS.2015.19.3.099","DOIUrl":null,"url":null,"abstract":"Hsp33 is a prokaryotic molecular chaperon that exerts a holdase activity upon response to an oxidative stress at raised temperature. In particular, intramolecular disulfide bond formation between the four conserved cysteines that bind a zinc ion in reduced state is known to be critically associated with the redox sensing. Here we report the backbone NMR assignment results of the half-oxidized Hsp33, where only two of the four cysteines form an intramolecular disulfide bond. Almost all of the resolved peaks could be unambiguously assigned, although the total assignments extent reached just about 50%. Majority of the missing assignments could be attributed to a significant spectral collapse, largely due to the oxidation-induced unfolding of the C-terminal redox-switch domain. These results support two previous suggestions: conformational change in the first oxidation step is localized mainly in the C-terminal zinc-binding domain, and the half-oxidized form would be still inactive. However, some additional regions appeared to be potentially changed from the reduced state, which suggest that the half-oxidized conformation would be an intermediate state that is more labile to heat and/or further oxidation.","PeriodicalId":17414,"journal":{"name":"Journal of the Korean magnetic resonance society","volume":"19 1","pages":"99-105"},"PeriodicalIF":0.4000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean magnetic resonance society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6564/JKMRS.2015.19.3.099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Hsp33 is a prokaryotic molecular chaperon that exerts a holdase activity upon response to an oxidative stress at raised temperature. In particular, intramolecular disulfide bond formation between the four conserved cysteines that bind a zinc ion in reduced state is known to be critically associated with the redox sensing. Here we report the backbone NMR assignment results of the half-oxidized Hsp33, where only two of the four cysteines form an intramolecular disulfide bond. Almost all of the resolved peaks could be unambiguously assigned, although the total assignments extent reached just about 50%. Majority of the missing assignments could be attributed to a significant spectral collapse, largely due to the oxidation-induced unfolding of the C-terminal redox-switch domain. These results support two previous suggestions: conformational change in the first oxidation step is localized mainly in the C-terminal zinc-binding domain, and the half-oxidized form would be still inactive. However, some additional regions appeared to be potentially changed from the reduced state, which suggest that the half-oxidized conformation would be an intermediate state that is more labile to heat and/or further oxidation.