{"title":"Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network","authors":"J. Han, M. Kim, H. S. Kim","doi":"10.7776/ASK.2020.39.1.064","DOIUrl":null,"url":null,"abstract":"In a conventional speech recognition system using Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), the cepstral feature normalization method based on pole filtering was effective in improving the performance of recognition of short utterances in noisy environments. In this paper, the usefulness of this method for the state-of-the-art speech recognition system using Deep Neural Network (DNN) is examined. Experimental results on AURORA 2 DB show that the cepstral mean and variance normalization based on pole filtering improves the recognition performance of very short utterances compared to that without pole filtering, especially when there is a large mismatch between the training and test conditions.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"39 1","pages":"64-68"},"PeriodicalIF":0.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.1.064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a conventional speech recognition system using Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), the cepstral feature normalization method based on pole filtering was effective in improving the performance of recognition of short utterances in noisy environments. In this paper, the usefulness of this method for the state-of-the-art speech recognition system using Deep Neural Network (DNN) is examined. Experimental results on AURORA 2 DB show that the cepstral mean and variance normalization based on pole filtering improves the recognition performance of very short utterances compared to that without pole filtering, especially when there is a large mismatch between the training and test conditions.