Comparison of environmental sound classification performance of convolutional neural networks according to audio preprocessing methods

W. Oh
{"title":"Comparison of environmental sound classification performance of convolutional neural networks according to audio preprocessing methods","authors":"W. Oh","doi":"10.7776/ASK.2020.39.3.143","DOIUrl":null,"url":null,"abstract":": This paper presents the effect of the feature extraction methods used in the audio preprocessing on the classification performance of the Convolutional Neural Networks (CNN). We extract mel spectrogram, log mel spectrogram, Mel Frequency Cepstral Coefficient (MFCC)","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"39 1","pages":"143-149"},"PeriodicalIF":0.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.3.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 3

Abstract

: This paper presents the effect of the feature extraction methods used in the audio preprocessing on the classification performance of the Convolutional Neural Networks (CNN). We extract mel spectrogram, log mel spectrogram, Mel Frequency Cepstral Coefficient (MFCC)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于音频预处理方法的卷积神经网络环境声音分类性能比较
本文研究了音频预处理中使用的特征提取方法对卷积神经网络(CNN)分类性能的影响。我们从urbanansound8k数据集中提取了mel谱图、对数mel谱图、mel频倒系数(MFCC)和delta MFCC,这些数据被广泛用于环境声音分类研究。然后我们将数据缩放到3个分布。利用这些数据,我们测试了四种cnn、VGG16和MobileNetV2网络,根据音频特征和缩放进行性能评估。当使用未缩放的对数谱作为音频特征时,识别率最高。虽然这个结果并不适用于所有的音频识别问题,但对于Urbansound8K中包含的环境声音分类是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
期刊最新文献
A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model An explorative study on the perceived emotion of music: according to cognitive styles of music listening A robust data association gate method of non-linear target tracking in dense cluttered environment Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1