Primary Hyperoxaluria Screening and Monitoring: Quantitative Measurement of Plasma Oxalate by Gas Chromatography-Mass Spectrometry With High Sensitivity.
{"title":"Primary Hyperoxaluria Screening and Monitoring: Quantitative Measurement of Plasma Oxalate by Gas Chromatography-Mass Spectrometry With High Sensitivity.","authors":"Mehrdad Yazdanpanah, Jessie Cameron, Chandra Chappel, Libin Yuan","doi":"10.3343/alm.2023.0178","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plasma oxalate measurements can be used for the screening and therapeutic monitoring of primary hyperoxaluria. We developed a gas chromatography-mass spectrometry (GC-MS) assay for plasma oxalate measurements with high sensitivity and suitable testing volumes for pediatric populations.</p><p><strong>Methods: </strong>Plasma oxalate was extracted, derivatized, and analyzed by GC-MS. We measured the ion at m/z 261.10 to quantify oxalate and the <sup>13</sup>C<sub>2</sub>-oxalate ion (m/z: 263.15) as the internal standard. Method validation included determination of the linear range, limit of blank, limit of detection, lower limit of quantification, precision, recovery, carryover, interference, and dilution effect. The cut-off value between primary and non-primary hyperoxaluria in a pediatric population was analyzed.</p><p><strong>Results: </strong>The detection limit was 0.78 μmol/L, and the linear range was up to 80.0 μmol/L. The between-day precision was 5.7% at 41.3 μmol/L and 13.1% at 1.6 μmol/L. The carryover was <0.2%. The recovery rate ranged from 90% to 110%. Interference analysis showed that Hb did not interfere with plasma oxalate quantification, whereas intralipids and bilirubin caused false elevation of oxalate concentrations. A cut-off of 13.9 μmol/L showed 63% specificity and 77% sensitivity, whereas a cut-off of 4.15 μmol/L showed 100% specificity and 20% sensitivity. The minimum required sample volume was 250 μL. The detected oxalate concentrations showed interference from instrument conditioning, sample preparation procedures, medications, and various clinical conditions.</p><p><strong>Conclusions: </strong>GC-MS is a sensitive assay for quantifying plasma oxalate and is suitable for pediatric patients. Plasma oxalate concentrations should be interpreted in a clinical context.</p>","PeriodicalId":8421,"journal":{"name":"Annals of Laboratory Medicine","volume":" ","pages":"235-244"},"PeriodicalIF":4.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Laboratory Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3343/alm.2023.0178","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Plasma oxalate measurements can be used for the screening and therapeutic monitoring of primary hyperoxaluria. We developed a gas chromatography-mass spectrometry (GC-MS) assay for plasma oxalate measurements with high sensitivity and suitable testing volumes for pediatric populations.
Methods: Plasma oxalate was extracted, derivatized, and analyzed by GC-MS. We measured the ion at m/z 261.10 to quantify oxalate and the 13C2-oxalate ion (m/z: 263.15) as the internal standard. Method validation included determination of the linear range, limit of blank, limit of detection, lower limit of quantification, precision, recovery, carryover, interference, and dilution effect. The cut-off value between primary and non-primary hyperoxaluria in a pediatric population was analyzed.
Results: The detection limit was 0.78 μmol/L, and the linear range was up to 80.0 μmol/L. The between-day precision was 5.7% at 41.3 μmol/L and 13.1% at 1.6 μmol/L. The carryover was <0.2%. The recovery rate ranged from 90% to 110%. Interference analysis showed that Hb did not interfere with plasma oxalate quantification, whereas intralipids and bilirubin caused false elevation of oxalate concentrations. A cut-off of 13.9 μmol/L showed 63% specificity and 77% sensitivity, whereas a cut-off of 4.15 μmol/L showed 100% specificity and 20% sensitivity. The minimum required sample volume was 250 μL. The detected oxalate concentrations showed interference from instrument conditioning, sample preparation procedures, medications, and various clinical conditions.
Conclusions: GC-MS is a sensitive assay for quantifying plasma oxalate and is suitable for pediatric patients. Plasma oxalate concentrations should be interpreted in a clinical context.
期刊介绍:
Annals of Laboratory Medicine is the official journal of Korean Society for Laboratory Medicine. The journal title has been recently changed from the Korean Journal of Laboratory Medicine (ISSN, 1598-6535) from the January issue of 2012. The JCR 2017 Impact factor of Ann Lab Med was 1.916.