Jack R. Marchetti, Susannah S. French, Emily E. Virgin, Erin L. Lewis, Kwanho C. Ki, Layne O. Sermersheim, George A. Brusch IV, Karen H. Beard
{"title":"Invading nonnative frogs use different microhabitats and change physiology along an elevation gradient","authors":"Jack R. Marchetti, Susannah S. French, Emily E. Virgin, Erin L. Lewis, Kwanho C. Ki, Layne O. Sermersheim, George A. Brusch IV, Karen H. Beard","doi":"10.1002/jez.2762","DOIUrl":null,"url":null,"abstract":"<p>The coqui frog (<i>Eleutherodactylus coqui</i>) was introduced to the island of Hawai'i in the 1980s, and has spread across much of the island. There is concern they will invade higher elevation areas where negative impacts on native species are expected. It is not known if coqui change behavior and baseline physiology in ways that allow them to invade higher elevations. We investigated where coqui are found across the island and whether that includes recent invasion into higher elevations. We also investigated whether elevation is related to coqui's microhabitat use, including substrate use and height off the forest floor, and physiological metrics, including plasma osmolality, oxidative status, glucose, free glycerol, and triglycerides, that might be associated with invading higher elevations. We found coqui have increased the area they occupy along roads from 31% to 50% and have moved into more high-elevation locations (16% vs. 1%) compared to where they were found 14 years ago. We also found frogs at high elevation on different substrates and closer to the forest floor than frogs at lower elevations—perhaps in response to air temperatures which tended to be warmer close to the forest floor. We observed that blood glucose and triglycerides increase in frogs with elevation. An increase in glucose is likely an acclimation response to cold temperatures while triglycerides may also help frogs cope with the energetic demands of suboptimal temperatures. Finally, we found that female coqui have higher plasma osmolality, reactive oxygen metabolites (dROMs), free glycerol, and triglycerides than males. Our study suggests coqui behavior and physiology in Hawai'i may be influenced by elevation in ways that allow them to cope with lower temperatures and invade higher elevations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2762","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The coqui frog (Eleutherodactylus coqui) was introduced to the island of Hawai'i in the 1980s, and has spread across much of the island. There is concern they will invade higher elevation areas where negative impacts on native species are expected. It is not known if coqui change behavior and baseline physiology in ways that allow them to invade higher elevations. We investigated where coqui are found across the island and whether that includes recent invasion into higher elevations. We also investigated whether elevation is related to coqui's microhabitat use, including substrate use and height off the forest floor, and physiological metrics, including plasma osmolality, oxidative status, glucose, free glycerol, and triglycerides, that might be associated with invading higher elevations. We found coqui have increased the area they occupy along roads from 31% to 50% and have moved into more high-elevation locations (16% vs. 1%) compared to where they were found 14 years ago. We also found frogs at high elevation on different substrates and closer to the forest floor than frogs at lower elevations—perhaps in response to air temperatures which tended to be warmer close to the forest floor. We observed that blood glucose and triglycerides increase in frogs with elevation. An increase in glucose is likely an acclimation response to cold temperatures while triglycerides may also help frogs cope with the energetic demands of suboptimal temperatures. Finally, we found that female coqui have higher plasma osmolality, reactive oxygen metabolites (dROMs), free glycerol, and triglycerides than males. Our study suggests coqui behavior and physiology in Hawai'i may be influenced by elevation in ways that allow them to cope with lower temperatures and invade higher elevations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.