A mechanistic assessment of the nature of pharmacodynamic drug-drug interaction in vivo and in vitro.

In silico pharmacology Pub Date : 2023-10-27 eCollection Date: 2023-01-01 DOI:10.1007/s40203-023-00168-y
Kuteesa R Bisaso, Jackson K Mukonzo, Ene I Ette
{"title":"A mechanistic assessment of the nature of pharmacodynamic drug-drug interaction in vivo and in vitro.","authors":"Kuteesa R Bisaso,&nbsp;Jackson K Mukonzo,&nbsp;Ene I Ette","doi":"10.1007/s40203-023-00168-y","DOIUrl":null,"url":null,"abstract":"<p><p>Combination pharmacotherapy is becoming increasingly necessary because most diseases are pathophysiologically controlled at the subcellular level by target proteins in a combinatorial manner. We demonstrate the application of the stimulus-response mechanistic model in characterising the drug and physiological properties of pharmacodynamic drug-drug interactions (PDDI) using previously published in vitro and in vivo drug combination experiments. The in vitro experiment tested the effect of a combination of SCH66336 and 4-HPR on the survival of in squamous cell carcinoma cell lines, while the in vivo experiment tested the effect of a combination of cetuximab and cisplatin on tumour growth inhibition in female xenograft mice. The model adequately described both experiments, quantified both system and drug properties and predicted the nature of the PDDI mechanism. Strong baseline signals of 7.35 and 610 units existed in the in vitro and in vivo experiments respectively. An overall synergistic relationship (interaction index = 1.03E-8) was detected in the in vitro experiment. In the in vivo model, the overall interaction index was 70,139.45 implying an antagonistic interaction between the cisplatin and the cetuximab signals.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-023-00168-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combination pharmacotherapy is becoming increasingly necessary because most diseases are pathophysiologically controlled at the subcellular level by target proteins in a combinatorial manner. We demonstrate the application of the stimulus-response mechanistic model in characterising the drug and physiological properties of pharmacodynamic drug-drug interactions (PDDI) using previously published in vitro and in vivo drug combination experiments. The in vitro experiment tested the effect of a combination of SCH66336 and 4-HPR on the survival of in squamous cell carcinoma cell lines, while the in vivo experiment tested the effect of a combination of cetuximab and cisplatin on tumour growth inhibition in female xenograft mice. The model adequately described both experiments, quantified both system and drug properties and predicted the nature of the PDDI mechanism. Strong baseline signals of 7.35 and 610 units existed in the in vitro and in vivo experiments respectively. An overall synergistic relationship (interaction index = 1.03E-8) was detected in the in vitro experiment. In the in vivo model, the overall interaction index was 70,139.45 implying an antagonistic interaction between the cisplatin and the cetuximab signals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体内外药效学药物相互作用性质的机制评估。
联合药物治疗变得越来越必要,因为大多数疾病在亚细胞水平上由靶蛋白以组合方式进行病理生理控制。我们使用先前发表的体外和体内药物组合实验,证明了刺激反应机制模型在表征药物和药效药物相互作用(PDDI)的生理特性方面的应用。体外实验测试了SCH66336和4-HPR的组合对鳞状细胞癌细胞系存活的影响,而体内实验测试了西妥昔单抗和顺铂的组合对雌性异种移植物小鼠肿瘤生长抑制的影响。该模型充分描述了两个实验,量化了系统和药物特性,并预测了PDDI机制的性质。在体外和体内实验中分别存在7.35和610个单位的强基线信号。整体协同关系(交互指数 = 1.03E-8)。在体内模型中,总体相互作用指数为70139.45,这意味着顺铂和西妥昔单抗信号之间存在拮抗性相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational targeting of iron uptake proteins in Covid-19 induced mucormycosis to identify inhibitors via molecular dynamics, molecular mechanics and density function theory studies. Integrative multi-target analysis of Urtica dioica for gout arthritis treatment: a network pharmacology and clustering approach. Molecular docking and dynamics simulation of farnesol as a potential anticancer agent targeting mTOR pathway. In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein. Anticipatory in silico vaccine designing based on specific antigenic epitopes from Streptococcus mutans against diabetic pathogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1