The First Genome-Wide Survey of Shortbelly Eel (Dysomma anguillare Barnard, 1923) to Provide Genomic Characteristics, Microsatellite Markers and Complete Mitogenome Information
Tian-yan Yang, Zi-yan Zhu, Yu-ping Liu, Si-ge Wang
{"title":"The First Genome-Wide Survey of Shortbelly Eel (Dysomma anguillare Barnard, 1923) to Provide Genomic Characteristics, Microsatellite Markers and Complete Mitogenome Information","authors":"Tian-yan Yang, Zi-yan Zhu, Yu-ping Liu, Si-ge Wang","doi":"10.1007/s10528-023-10543-1","DOIUrl":null,"url":null,"abstract":"<div><p><i>Dysomma anguillare</i> is a demersal eel widespread distributing in tropical waters of the Indo-West Pacific and Atlantic. As an important component of the coastal fishery and marine ecosystem, the lack of genomic information for this species severely restricts the progress of relevant researches. In this study, the abecedarian genome-wide characteristics and phylogenetic relationships analyses were carried out based on next-generation sequencing (NGS) platform. The revised genome size was approximately 1 310 Mb, with the largest scaffold length reaching 23 878 bp through K-mer (<i>K</i> = 17) method. The heterozygosity, repetitive rate and average GC content were about 0.94%, 51.93% and 42.23%, respectively. A total of 1 160 104 microsatellite motifs were identified from the de novo assembled genome of <i>D. anguillare</i>, in which dinucleotide repeats accounted for the largest proportion (592 234, 51.05%), the highest occurrence frequency (14.58%) as well as the largest relative abundance (379.27/Mb). The high-polymorphic and moderate-polymorphic loci composed around 73% of the total single sequence repeats (SSRs), showing a latent capacity for subsequent population genetic structure and genetic diversity appraisal researches. Another byproduct of whole-genome sequencing, the double-stranded and circular mitogenome (16 690 bp) was assembled to investigate the evolutionary relationships of <i>D. anguillare.</i> The phylogenic tree constructed with maximum likelihood (ML) method showed that <i>D. anguillare</i> was closely related to Synaphobranchidae species, and the molecular systematic results further supported classical taxonomy status of <i>D. anguillare.</i></p></div>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":"62 3","pages":"2296 - 2313"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10528-023-10543-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dysomma anguillare is a demersal eel widespread distributing in tropical waters of the Indo-West Pacific and Atlantic. As an important component of the coastal fishery and marine ecosystem, the lack of genomic information for this species severely restricts the progress of relevant researches. In this study, the abecedarian genome-wide characteristics and phylogenetic relationships analyses were carried out based on next-generation sequencing (NGS) platform. The revised genome size was approximately 1 310 Mb, with the largest scaffold length reaching 23 878 bp through K-mer (K = 17) method. The heterozygosity, repetitive rate and average GC content were about 0.94%, 51.93% and 42.23%, respectively. A total of 1 160 104 microsatellite motifs were identified from the de novo assembled genome of D. anguillare, in which dinucleotide repeats accounted for the largest proportion (592 234, 51.05%), the highest occurrence frequency (14.58%) as well as the largest relative abundance (379.27/Mb). The high-polymorphic and moderate-polymorphic loci composed around 73% of the total single sequence repeats (SSRs), showing a latent capacity for subsequent population genetic structure and genetic diversity appraisal researches. Another byproduct of whole-genome sequencing, the double-stranded and circular mitogenome (16 690 bp) was assembled to investigate the evolutionary relationships of D. anguillare. The phylogenic tree constructed with maximum likelihood (ML) method showed that D. anguillare was closely related to Synaphobranchidae species, and the molecular systematic results further supported classical taxonomy status of D. anguillare.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.