Cardiac MRI-derived Myocardial Fibrosis and Ventricular Dyssynchrony Predict Response to Cardiac Resynchronization Therapy in Patients with Nonischemic Dilated Cardiomyopathy.
Purpose: To determine the association of myocardial fibrosis and left ventricular (LV) dyssynchrony measured using cardiac MRI with late gadolinium enhancement (LGE) and feature tracking (FT), respectively, with response to cardiac resynchronization therapy (CRT) for nonischemic dilated cardiomyopathy (DCM).
Materials and methods: This retrospective study included 98 patients (mean age, 59 years ± 10 [SD]; 54 men) who had nonischemic DCM, as assessed with LGE cardiac MRI before CRT. Cardiac MRI FT-derived dyssynchrony was defined as the SD of the time-to-peak strain (TTP-SD) of the LV segments in three directions (longitudinal, radial, and circumferential). CRT response was defined as a 15% increase in LV ejection fraction (LVEF) at echocardiography at 6-month follow-up, and then, long-term cardiovascular events were assessed. The likelihood ratio test was used to evaluate the incremental prognostic value of LGE and dyssynchrony parameters.
Results: Seventy-one (72%) patients showed a favorable LVEF response following CRT. LGE presence (odds ratio: 0.14 [95% CI: 0.04, 0.47], P = .002; and hazard ratio: 3.52 [95% CI: 1.37, 9.07], P = .01) and lower circumferential TTP-SD (odds ratio: 1.04 [95% CI: 1.02, 1.07], P = .002; and hazard ratio: 0.98 [95% CI: 0.96, 1.00], P = .03) were independently associated with LVEF nonresponse and long-term outcomes. Combined LGE and circumferential TTP-SD provided the highest discrimination for LVEF nonresponse (area under the receiver operating characteristic curve [AUC]: 0.89 [95% CI: 0.81, 0.94], sensitivity: 84.5% [95% CI: 74.0%, 92.0%], specificity: 85.2% [95% CI: 66.3%, 95.8%]) and long-term outcomes (AUC: 0.84 [95% CI: 0.75, 0.91], sensitivity: 76.9% [95% CI: 56.4%, 91.0%], specificity: 87.0% [95% CI: 76.7%, 93.9%]).