Ricardo Ribeiro Nunes, Isadora D'Ávila Tassinari, Janaína Zang, Mirella Kielek Galvan Andrade, Anna Clara Machado Colucci, Mariana Leivas Müller Hoff, Maikel Rosa de Oliveira, Ana Helena Paz, Luciano Stürmer de Fraga
{"title":"Therapeutic Hypothermia Is Limited in Preventing Developmental Impairments after Neonatal Hypoxia-Ischemia.","authors":"Ricardo Ribeiro Nunes, Isadora D'Ávila Tassinari, Janaína Zang, Mirella Kielek Galvan Andrade, Anna Clara Machado Colucci, Mariana Leivas Müller Hoff, Maikel Rosa de Oliveira, Ana Helena Paz, Luciano Stürmer de Fraga","doi":"10.1159/000534919","DOIUrl":null,"url":null,"abstract":"<p><p>The only current treatment for neonatal hypoxia-ischemia (HI) is therapeutic hypothermia (TH), which still shows some limitations. Specific effects of TH in the several processes involved in brain injury progression remain unclear. In this study, the effects of TH treatment on developmental parameters, behavioral outcomes, and peripheral leukocytes were evaluated in neonatal male and female rats. In P7, animals were submitted to right common carotid artery occlusion followed by hypoxia (8% oxygen). TH was performed by reducing the animal scalp temperature to 32°C for 5 h. Behavioral parameters and developmental landmarks were evaluated. Animals were euthanized at P9 or P21, and cerebral hemispheres, spleen, and thymus were weighed. White blood cells (WBCs) were counted in blood smears. There was a reduction in the weight of the brain hemisphere ipsilateral to the carotid occlusion in HI and TH groups, as well as a reduction in body weight gain and a delay in the opening of the ipsilateral eye. Latency in negative geotaxis was increased by HI at P12. TH did not prevent brain weight loss, developmental impairments, or WBC number changes but prevented negative geotaxis impairment and spleen weight reduction. These data reinforce that a better understanding of the events that occur after HI and TH in both males and females is necessary and would allow the development of more adequate and sex-specific therapeutic approaches.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"273-284"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000534919","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The only current treatment for neonatal hypoxia-ischemia (HI) is therapeutic hypothermia (TH), which still shows some limitations. Specific effects of TH in the several processes involved in brain injury progression remain unclear. In this study, the effects of TH treatment on developmental parameters, behavioral outcomes, and peripheral leukocytes were evaluated in neonatal male and female rats. In P7, animals were submitted to right common carotid artery occlusion followed by hypoxia (8% oxygen). TH was performed by reducing the animal scalp temperature to 32°C for 5 h. Behavioral parameters and developmental landmarks were evaluated. Animals were euthanized at P9 or P21, and cerebral hemispheres, spleen, and thymus were weighed. White blood cells (WBCs) were counted in blood smears. There was a reduction in the weight of the brain hemisphere ipsilateral to the carotid occlusion in HI and TH groups, as well as a reduction in body weight gain and a delay in the opening of the ipsilateral eye. Latency in negative geotaxis was increased by HI at P12. TH did not prevent brain weight loss, developmental impairments, or WBC number changes but prevented negative geotaxis impairment and spleen weight reduction. These data reinforce that a better understanding of the events that occur after HI and TH in both males and females is necessary and would allow the development of more adequate and sex-specific therapeutic approaches.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.