{"title":"Spiking neural network-based computational modeling of episodic memory.","authors":"Rahul Shrivastava, Pushpraj Singh Chauhan","doi":"10.1080/10255842.2023.2275544","DOIUrl":null,"url":null,"abstract":"<p><p>In this research article, a spiking neural network-based simulation of the hippocampus is performed to model the functionalities of episodic memory. The purpose of the simulation is to find a computational model through the biological architecture of the hippocampus and correct values for their architectural biological parameters to support the episodic memory functionalities. The episodic store of the model is represented by the collection of events, where each event is further subdivided into coactive activities of experience. The model has tried to mimic the three functionalities of episodic memory, which are pattern separation, pattern association, and their recallings. In pattern separation model used the dentate biological connectivity to generate almost different output patterns corresponding to similar input patterns to reduce interference between two similar memory traces so that ambiguity can be reduced during recalling. In pattern association, an STDP based event encoding and forgetting mechanism are used to mimic the encoding function of the CA3 region in which the coactive activities get associated with each other. A decoder is proposed based on CA1, which can answer the stored event related queries. Along with these functionalities model also supports recalling and encoding based forgetting. Experimental work is performed on the model for the given set of events to check for the pattern separation efficiency, pattern completion efficiency and to check the capability of decoding the answer. An empirical analysis of the results is done and compared with the SMRITI model of episodic memory.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"2231-2245"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2275544","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research article, a spiking neural network-based simulation of the hippocampus is performed to model the functionalities of episodic memory. The purpose of the simulation is to find a computational model through the biological architecture of the hippocampus and correct values for their architectural biological parameters to support the episodic memory functionalities. The episodic store of the model is represented by the collection of events, where each event is further subdivided into coactive activities of experience. The model has tried to mimic the three functionalities of episodic memory, which are pattern separation, pattern association, and their recallings. In pattern separation model used the dentate biological connectivity to generate almost different output patterns corresponding to similar input patterns to reduce interference between two similar memory traces so that ambiguity can be reduced during recalling. In pattern association, an STDP based event encoding and forgetting mechanism are used to mimic the encoding function of the CA3 region in which the coactive activities get associated with each other. A decoder is proposed based on CA1, which can answer the stored event related queries. Along with these functionalities model also supports recalling and encoding based forgetting. Experimental work is performed on the model for the given set of events to check for the pattern separation efficiency, pattern completion efficiency and to check the capability of decoding the answer. An empirical analysis of the results is done and compared with the SMRITI model of episodic memory.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.