Chromosome-level genome assembly of a xerophytic plant, Haloxylon ammodendron.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY DNA Research Pub Date : 2022-02-27 DOI:10.1093/dnares/dsac006
Mingcheng Wang, Lei Zhang, Shaofei Tong, Dechun Jiang, Zhixi Fu
{"title":"Chromosome-level genome assembly of a xerophytic plant, Haloxylon ammodendron.","authors":"Mingcheng Wang,&nbsp;Lei Zhang,&nbsp;Shaofei Tong,&nbsp;Dechun Jiang,&nbsp;Zhixi Fu","doi":"10.1093/dnares/dsac006","DOIUrl":null,"url":null,"abstract":"<p><p>Haloxylon ammodendron is a xerophytic perennial shrub or small tree that has a high ecological value in anti-desertification due to its high tolerance to drought and salt stress. Here, we report a high-quality, chromosome-level genome assembly of H. ammodendron by integrating PacBio's high-fidelity sequencing and Hi-C technology. The assembled genome size was 685.4 Mb, of which 99.6% was assigned to nine pseudochromosomes with a contig N50 value of 23.6 Mb. Evolutionary analysis showed that both the recent substantial amplification of long terminal repeat retrotransposons and tandem gene duplication may have contributed to its genome size expansion and arid adaptation. An ample amount of low-GC genes was closely related to functions that may contribute to the desert adaptation of H. ammodendron. Gene family clustering together with gene expression analysis identified differentially expressed genes that may play important roles in the direct response of H. ammodendron to water-deficit stress. We also identified several genes possibly related to the degraded scaly leaves and well-developed root system of H. ammodendron. The reference-level genome assembly presented here will provide a valuable genomic resource for studying the genome evolution of xerophytic plants, as well as for further genetic breeding studies of H. ammodendron.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"29 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8946665/pdf/","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsac006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 10

Abstract

Haloxylon ammodendron is a xerophytic perennial shrub or small tree that has a high ecological value in anti-desertification due to its high tolerance to drought and salt stress. Here, we report a high-quality, chromosome-level genome assembly of H. ammodendron by integrating PacBio's high-fidelity sequencing and Hi-C technology. The assembled genome size was 685.4 Mb, of which 99.6% was assigned to nine pseudochromosomes with a contig N50 value of 23.6 Mb. Evolutionary analysis showed that both the recent substantial amplification of long terminal repeat retrotransposons and tandem gene duplication may have contributed to its genome size expansion and arid adaptation. An ample amount of low-GC genes was closely related to functions that may contribute to the desert adaptation of H. ammodendron. Gene family clustering together with gene expression analysis identified differentially expressed genes that may play important roles in the direct response of H. ammodendron to water-deficit stress. We also identified several genes possibly related to the degraded scaly leaves and well-developed root system of H. ammodendron. The reference-level genome assembly presented here will provide a valuable genomic resource for studying the genome evolution of xerophytic plants, as well as for further genetic breeding studies of H. ammodendron.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种旱生植物梭梭的染色体水平基因组组装。
梭梭是一种多年生旱生灌木或小乔木,由于其对干旱和盐胁迫的高度耐受性,在抗荒漠化方面具有较高的生态价值。在这里,我们通过整合PacBio的高保真测序和Hi-C技术,报道了梭梭的高质量染色体水平基因组组装。组装的基因组大小为685.4Mb,其中99.6%被分配给9个假染色体,重叠群N50值为23.6Mb。进化分析表明,最近长末端重复逆转录转座子的大量扩增和串联基因复制可能有助于其基因组大小的扩大和干旱适应。大量的低GC基因与可能有助于梭梭沙漠适应的功能密切相关。基因家族聚类和基因表达分析确定了差异表达基因,这些基因可能在梭梭对缺水胁迫的直接反应中发挥重要作用。我们还鉴定了几个可能与梭梭鳞片叶退化和根系发达有关的基因。本文提供的参考水平基因组组装将为研究旱生植物的基因组进化以及进一步的梭梭遗传育种研究提供宝贵的基因组资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DNA Research
DNA Research 生物-遗传学
CiteScore
6.00
自引率
4.90%
发文量
39
审稿时长
4.5 months
期刊介绍: DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.
期刊最新文献
Chromosome-scale genome assembly of acerola (Malpighia emarginata DC.). The burst of satellite DNA in Leptidea wood white butterflies and their putative role in karyotype evolution. Time-dependent changes in genome-wide gene expression and post-transcriptional regulation across the post-death process in silkworm. A fully phased, chromosome-scale genome of sugar beet line FC309 enables the discovery of Fusarium yellows resistance QTL. Insights from the first chromosome-level genome assembly of the alpine gentian Gentiana straminea Maxim.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1