Analyzing the dynamics of social media texts using coherency network analysis: a case study of the tweets with the co-hashtags of #BlackLivesMatter and #StopAsianHate.

Frontiers in research metrics and analytics Pub Date : 2023-10-18 eCollection Date: 2023-01-01 DOI:10.3389/frma.2023.1239726
Ke Jiang, Qian Xu
{"title":"Analyzing the dynamics of social media texts using coherency network analysis: a case study of the tweets with the co-hashtags of #BlackLivesMatter and #StopAsianHate.","authors":"Ke Jiang,&nbsp;Qian Xu","doi":"10.3389/frma.2023.1239726","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study examines the associations between time series, termed \"coherency,\" using spectral analysis. Coherence squared, analogous to the squared correlation coefficient, serves as a metric to quantify the degree of interdependence and co-evolution of individual nodes.</p><p><strong>Methods: </strong>We utilized spectral analysis to compute coherence squared, unveiling relationships and co-evolution patterns among individual nodes. The resultant matrix of these relationships was subjected to network analysis.</p><p><strong>Results: </strong>By conducting a case study analyzing tweets associated with the co-hashtags #StopAsianHate and #BlackLivesMatter, we present a novel approach utilizing coherency network analysis to investigate the dynamics of social media text. Frequency domain analysis aided in calculating coherence squared, effectively illustrating the relationships and co-evolution of individual nodes. Furthermore, an analysis of the phase spectrum's slope facilitated the determination of time lag and potential causality direction between highly co-evolved node pairs.</p><p><strong>Discussion: </strong>Our findings underline the potential of coherency network analysis in comprehending the intricate dynamics of social media text. This approach offers valuable insights into how topics, sentiments, or movements manifest and evolve within the digital realm. Future research should explore diverse datasets and domains to broaden our understanding of this novel analytical technique.</p>","PeriodicalId":73104,"journal":{"name":"Frontiers in research metrics and analytics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618672/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in research metrics and analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frma.2023.1239726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This study examines the associations between time series, termed "coherency," using spectral analysis. Coherence squared, analogous to the squared correlation coefficient, serves as a metric to quantify the degree of interdependence and co-evolution of individual nodes.

Methods: We utilized spectral analysis to compute coherence squared, unveiling relationships and co-evolution patterns among individual nodes. The resultant matrix of these relationships was subjected to network analysis.

Results: By conducting a case study analyzing tweets associated with the co-hashtags #StopAsianHate and #BlackLivesMatter, we present a novel approach utilizing coherency network analysis to investigate the dynamics of social media text. Frequency domain analysis aided in calculating coherence squared, effectively illustrating the relationships and co-evolution of individual nodes. Furthermore, an analysis of the phase spectrum's slope facilitated the determination of time lag and potential causality direction between highly co-evolved node pairs.

Discussion: Our findings underline the potential of coherency network analysis in comprehending the intricate dynamics of social media text. This approach offers valuable insights into how topics, sentiments, or movements manifest and evolve within the digital realm. Future research should explore diverse datasets and domains to broaden our understanding of this novel analytical technique.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用连贯性网络分析分析社交媒体文本的动态:对带有#BlackLivesMatter和#StopAsianHate共同标签的推文的案例研究。
引言:这项研究使用光谱分析来研究时间序列之间的关联,称为“相干性”。相干平方,类似于平方相关系数,用作量化单个节点的相互依赖和共同进化程度的度量。方法:我们利用光谱分析来计算相干平方,揭示单个节点之间的关系和协同进化模式。对这些关系的结果矩阵进行网络分析。结果:通过对与#StopAsianHaate和#BlackLivesMatter共同标签相关的推文进行案例分析,我们提出了一种利用连贯性网络分析来研究社交媒体文本动态的新方法。频域分析有助于计算相干平方,有效地说明了各个节点的关系和协同进化。此外,对相位谱斜率的分析有助于确定高度协同进化的节点对之间的时间滞后和潜在因果关系方向。讨论:我们的研究结果强调了连贯性网络分析在理解社交媒体文本复杂动态方面的潜力。这种方法为主题、情感或运动如何在数字领域中表现和发展提供了宝贵的见解。未来的研究应该探索不同的数据集和领域,以拓宽我们对这种新型分析技术的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Navigating algorithm bias in AI: ensuring fairness and trust in Africa. The ethics of knowledge sharing: a feminist examination of intellectual property rights and open-source materials in gender transformative methodologies. Complexity and phase transitions in citation networks: insights from artificial intelligence research. Designing measures of complex collaborations with participatory, evidence-centered design. Patent data-driven analysis of literature associations with changing innovation trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1