Process-structure-biofunctional paradigm in cellular structured implants: an overview and perspective on the synergy between additive manufacturing, bio-mechanical behaviour and biological functions.
{"title":"Process-structure-biofunctional paradigm in cellular structured implants: an overview and perspective on the synergy between additive manufacturing, bio-mechanical behaviour and biological functions.","authors":"R D K Misra, K P Misra","doi":"10.1080/21691401.2023.2278156","DOIUrl":null,"url":null,"abstract":"<p><p>The overview describes the synergy between biological sciences and cellular structures processed by additive manufacturing to elucidate the significance of cellular structured implants in eliminating stress shielding and in meeting the bio-mechanical property requirements of elastic modulus, impact resistance, and fatigue strength in conjunction with the biological functionality. The convergence of additive manufacturing, computer-aided design, and structure-property relationships is envisaged to provide the solution to the current day challenges in the biomedical arena. The traditional methods of fabrication of biomedical devices including casting and mechanical forming have limitations because of the mismatch in micro/microstructure, mechanical, and physical properties with the host site. Additive manufacturing of cellular structured alloys <i>via</i> electron beam melting and laser powder bed fusion has benefits of fabricating patient-specific design that is obtained from the computed tomography scan of the defect site. The discussion in the overview consists of two aspects - the first one describes the underlying reason that motivated 3D printing of implants from the perspective of minimising stress shielding together with the mechanical property requirements, where the mechanical properties of cellular structured implants depend on the cellular architecture and percentage cellular porosity. The second aspect focuses on the biological response of cellular structured devices.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2023.2278156","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The overview describes the synergy between biological sciences and cellular structures processed by additive manufacturing to elucidate the significance of cellular structured implants in eliminating stress shielding and in meeting the bio-mechanical property requirements of elastic modulus, impact resistance, and fatigue strength in conjunction with the biological functionality. The convergence of additive manufacturing, computer-aided design, and structure-property relationships is envisaged to provide the solution to the current day challenges in the biomedical arena. The traditional methods of fabrication of biomedical devices including casting and mechanical forming have limitations because of the mismatch in micro/microstructure, mechanical, and physical properties with the host site. Additive manufacturing of cellular structured alloys via electron beam melting and laser powder bed fusion has benefits of fabricating patient-specific design that is obtained from the computed tomography scan of the defect site. The discussion in the overview consists of two aspects - the first one describes the underlying reason that motivated 3D printing of implants from the perspective of minimising stress shielding together with the mechanical property requirements, where the mechanical properties of cellular structured implants depend on the cellular architecture and percentage cellular porosity. The second aspect focuses on the biological response of cellular structured devices.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.