Biological effects of air pollution on the function of human skin equivalents

IF 2.5 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY FASEB bioAdvances Pub Date : 2023-10-03 DOI:10.1096/fba.2023-00068
Wil J. Reynolds, Ndubuisi Eje, Paul Christensen, Wen-Hwa Li, Susan M. Daly, Ramine Parsa, Bhaven Chavan, Mark A. Birch-Machin
{"title":"Biological effects of air pollution on the function of human skin equivalents","authors":"Wil J. Reynolds,&nbsp;Ndubuisi Eje,&nbsp;Paul Christensen,&nbsp;Wen-Hwa Li,&nbsp;Susan M. Daly,&nbsp;Ramine Parsa,&nbsp;Bhaven Chavan,&nbsp;Mark A. Birch-Machin","doi":"10.1096/fba.2023-00068","DOIUrl":null,"url":null,"abstract":"<p>The World Health Organization reports that 99% of the global population are exposed to pollution levels higher than the recommended air quality guidelines. Pollution-induced changes in the skin have begun to surface; however, the effects require further investigation so that effective protective strategies can be developed. This study aimed to investigate some of the aging-associated effects caused by ozone and particulate matter (PM) on human skin equivalents. Full-thickness skin equivalents were exposed to 0.01 μg/μL PM, 0.05 μg/μL PM, 0.3 ppm ozone, or a combination of 0.01 μg/μL PM and 0.3 ppm ozone, before skin equivalents and culture medium were harvested for histological/immunohistochemical staining, gene and protein expression analysis using qPCR, Western blotting, and ELISA. Markers include MMP-1, MMP-3, <i>COL1A1</i>, collagen-I, 4-HNE, HMGCR, and PGE2. PM was observed to induce a decrease in epidermal thickness and an enhanced matrix building phenotype, with increases in <i>COL1A1</i> and an increase in collagen-I protein expression. By contrast, ozone induced an increase in epidermal thickness and was found to induce a matrix-degrading phenotype, with decreases in collagen-I gene/protein expression and increases in MMP-1 and MMP-3 gene/protein expression. Ozone was also found to induce changes in lipid homeostasis and inflammation induction. Some synergistic damage was also observed when combining ozone and 0.01 μg/μL PM. The results presented in this study identify distinct pollutant-induced effects and show how pollutants may act synergistically to augment damage; given individuals are rarely only exposed to one pollutant type, exposure to multiple pollutant types should be considered to develop effective protective interventions.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"5 11","pages":"470-483"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fba.2023-00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The World Health Organization reports that 99% of the global population are exposed to pollution levels higher than the recommended air quality guidelines. Pollution-induced changes in the skin have begun to surface; however, the effects require further investigation so that effective protective strategies can be developed. This study aimed to investigate some of the aging-associated effects caused by ozone and particulate matter (PM) on human skin equivalents. Full-thickness skin equivalents were exposed to 0.01 μg/μL PM, 0.05 μg/μL PM, 0.3 ppm ozone, or a combination of 0.01 μg/μL PM and 0.3 ppm ozone, before skin equivalents and culture medium were harvested for histological/immunohistochemical staining, gene and protein expression analysis using qPCR, Western blotting, and ELISA. Markers include MMP-1, MMP-3, COL1A1, collagen-I, 4-HNE, HMGCR, and PGE2. PM was observed to induce a decrease in epidermal thickness and an enhanced matrix building phenotype, with increases in COL1A1 and an increase in collagen-I protein expression. By contrast, ozone induced an increase in epidermal thickness and was found to induce a matrix-degrading phenotype, with decreases in collagen-I gene/protein expression and increases in MMP-1 and MMP-3 gene/protein expression. Ozone was also found to induce changes in lipid homeostasis and inflammation induction. Some synergistic damage was also observed when combining ozone and 0.01 μg/μL PM. The results presented in this study identify distinct pollutant-induced effects and show how pollutants may act synergistically to augment damage; given individuals are rarely only exposed to one pollutant type, exposure to multiple pollutant types should be considered to develop effective protective interventions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空气污染对人体皮肤等同物功能的生物影响。
世界卫生组织报告称,全球99%的人口面临的污染水平高于建议的空气质量指南。污染引起的皮肤变化已经开始显现;然而,这种影响需要进一步调查,以便制定有效的保护策略。本研究旨在研究臭氧和颗粒物(PM)对人体皮肤等效物造成的一些与衰老相关的影响。全厚度皮肤当量暴露于0.01 μg/μL PM,0.05 μg/μL 下午,0.3 ppm臭氧,或0.01的组合 μg/μL PM和0.3 ppm臭氧,然后采集皮肤当量和培养基进行组织学/免疫组织化学染色,使用qPCR、蛋白质印迹和ELISA进行基因和蛋白质表达分析。标记物包括MMP-1、MMP-3、COL1A1、胶原-I、4-HNE、HMGCR和PGE2。观察到PM诱导表皮厚度降低和基质构建表型增强,COL1A1增加,胶原I蛋白表达增加。相反,臭氧诱导表皮厚度增加,并被发现诱导基质降解表型,胶原I基因/蛋白表达减少,MMP-1和MMP-3基因/蛋白的表达增加。臭氧也被发现可以诱导脂质稳态的变化和炎症的诱导。当臭氧和0.01混合时,也观察到一些协同损伤 μg/μL PM。本研究中的结果确定了不同的污染物诱导效应,并表明污染物如何协同作用以增加损害;鉴于个人很少只接触一种污染物类型,应考虑接触多种污染物类型,以制定有效的保护干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FASEB bioAdvances
FASEB bioAdvances Multiple-
CiteScore
5.40
自引率
3.70%
发文量
56
审稿时长
10 weeks
期刊最新文献
Issue Information Medium-chain fatty acid receptor GPR84 deficiency leads to metabolic homeostasis dysfunction in mice fed high-fat diet TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression Everything, everywhere, and all at once: A blueprint for supra-organization of core facilities New role of calcium-binding fluorescent dye alizarin complexone in detecting permeability from articular cartilage to subchondral bone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1