Mutagenesis of Wheat Powdery Mildew Reveals a Single Gene Controlling Both NLR and Tandem Kinase-Mediated Immunity.
Zoe Bernasconi, Ursin Stirnemann, Matthias Heuberger, Alexandros G Sotiropoulos, Johannes Graf, Thomas Wicker, Beat Keller, Javier Sánchez-Martín
求助PDF
{"title":"Mutagenesis of Wheat Powdery Mildew Reveals a Single Gene Controlling Both NLR and Tandem Kinase-Mediated Immunity.","authors":"Zoe Bernasconi, Ursin Stirnemann, Matthias Heuberger, Alexandros G Sotiropoulos, Johannes Graf, Thomas Wicker, Beat Keller, Javier Sánchez-Martín","doi":"10.1094/MPMI-09-23-0136-FI","DOIUrl":null,"url":null,"abstract":"<p><p><i>Blumeria graminis</i> f. sp. <i>tritici</i> (<i>Bgt</i>) is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance (<i>Pm</i>) genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify <i>Avr</i> genes in <i>Bgt</i> by generating gain-of-virulence mutants on <i>Pm</i> genes. We first identified six <i>Bgt</i> mutants with gain of virulence on <i>Pm3b</i> and <i>Pm3c.</i> They all had point mutations, deletions or insertions of transposable elements within the corresponding <i>AvrPm3<sup>b2/c2</sup></i> gene or its promoter region. We further selected six mutants on <i>Pm3a</i>, aiming to identify the yet unknown AvrPm3<sup>a3</sup> recognized by Pm3a, in addition to the previously described AvrPm3<sup>a2/f2</sup>. Surprisingly, <i>Pm3a</i> virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene <i>WTK4.</i> No virulence toward 11 additional <i>R</i> genes tested was observed, indicating that the gain of virulence was specific for <i>Pm3a</i> and <i>WTK4</i>. Several independently obtained <i>Pm3a-WTK4</i> mutants have mutations in <i>Bgt-646</i>, a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that <i>Bgt-646</i> regulates a subset of effector genes. We conclude that <i>Bgt-646</i> is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":"264-276"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant-microbe Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-09-23-0136-FI","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Blumeria graminis f. sp. tritici (Bgt ) is a globally important fungal wheat pathogen. Some wheat genotypes contain powdery mildew resistance (Pm ) genes encoding immune receptors that recognize specific fungal-secreted effector proteins, defined as avirulence (Avr) factors. Identifying Avr factors is vital for understanding the mechanisms, functioning, and durability of wheat resistance. Here, we present AvrXpose, an approach to identify Avr genes in Bgt by generating gain-of-virulence mutants on Pm genes. We first identified six Bgt mutants with gain of virulence on Pm3b and Pm3c. They all had point mutations, deletions or insertions of transposable elements within the corresponding AvrPm3b2/c2 gene or its promoter region. We further selected six mutants on Pm3a , aiming to identify the yet unknown AvrPm3a3 recognized by Pm3a, in addition to the previously described AvrPm3a2/f2 . Surprisingly, Pm3a virulence in the obtained mutants was always accompanied by an additional gain of virulence on the unrelated tandem kinase resistance gene WTK4. No virulence toward 11 additional R genes tested was observed, indicating that the gain of virulence was specific for Pm3a and WTK4 . Several independently obtained Pm3a-WTK4 mutants have mutations in Bgt-646 , a gene encoding a putative, nonsecreted ankyrin repeat-containing protein. Gene expression analysis suggests that Bgt-646 regulates a subset of effector genes. We conclude that Bgt-646 is a common factor required for avirulence on both a specific nucleotide-binding leucine-rich repeat and a WTK immune receptor. Our findings suggest that, beyond effectors, another type of pathogen protein can control the race-specific interaction between powdery mildew and wheat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
小麦白粉菌的突变揭示了一个控制NLR和串联激酶介导的免疫的单一基因。
小麦布鲁菌(Blumeria graminis f.sp.tritici,Bgt)是全球重要的小麦病原真菌。一些小麦基因型含有抗白粉病(Pm)基因,编码识别特定真菌分泌效应蛋白的免疫受体,然后被定义为无毒(Avr)因子。识别Avr因子对于理解小麦抗性的机制、功能和耐久性至关重要。在这里,我们提出了AvrXpose,一种通过在Pm基因上产生毒力突变体来鉴定Bgt中Avr基因的方法。我们首先鉴定了6个对Pm3b和Pm3c具有毒力增益的Bgt突变体。它们都在相应的AvrPm3b2/c2基因或其启动子区内具有转座元件的点突变、缺失或插入。我们进一步选择了Pm3a上的六个突变体,旨在鉴定Pm3a识别的未知AvrPm3a3,以及先前描述的AvrPM2A2/f2。令人惊讶的是,所获得的突变体中的Pm3a毒力总是伴随着对不相关的串联激酶抗性基因WTK4的额外毒力增加。未观察到对所测试的另外11个R基因的毒力,表明毒力的获得对Pm3a和WTK4是特异性的。几个独立获得的Pm3a-WTK4突变体在Bgt-646中有突变,Bgt-64是一种编码推定的非分泌锚蛋白重复序列的蛋白质的基因。基因表达分析表明,Bgt-646调节效应基因的一个子集。我们得出的结论是,Bgt-646是对特定NLR和WTK免疫受体无毒性所需的共同因素。我们的研究结果表明,除了效应物之外,另一种类型的病原体蛋白可以控制小麦和白粉菌之间的种族特异性相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。