{"title":"The montage method improves the classification of suspected acute ischemic stroke using the convolution neural network and brain MRI.","authors":"Daisuke Oura, Masayuki Gekka, Hiroyuki Sugimori","doi":"10.1007/s12194-023-00754-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the usefulness of the montage method that combines four different magnetic resonance images into one images for automatic acute ischemic stroke (AIS) diagnosis with deep learning method. The montage image was consisted from diffusion weighted image (DWI), fluid attenuated inversion recovery (FLAIR), arterial spin labeling (ASL), and apparent diffusion coefficient (ASL). The montage method was compared with pseudo color map (pCM) which was consisted from FLAIR, ASL and ADC. 473 AIS patients were classified into four categories: mechanical thrombectomy, conservative therapy, hemorrhage, and other diseases. The results showed that the montage image significantly outperformed pCM in terms of accuracy (montage image = 0.76 ± 0.01, pCM = 0.54 ± 0.05) and the area under the curve (AUC) (montage image = 0.94 ± 0.01, pCM = 0.76 ± 0.01). This study demonstrates the usefulness of the montage method and its potential for overcoming the limitations of pCM.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"297-305"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-023-00754-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the usefulness of the montage method that combines four different magnetic resonance images into one images for automatic acute ischemic stroke (AIS) diagnosis with deep learning method. The montage image was consisted from diffusion weighted image (DWI), fluid attenuated inversion recovery (FLAIR), arterial spin labeling (ASL), and apparent diffusion coefficient (ASL). The montage method was compared with pseudo color map (pCM) which was consisted from FLAIR, ASL and ADC. 473 AIS patients were classified into four categories: mechanical thrombectomy, conservative therapy, hemorrhage, and other diseases. The results showed that the montage image significantly outperformed pCM in terms of accuracy (montage image = 0.76 ± 0.01, pCM = 0.54 ± 0.05) and the area under the curve (AUC) (montage image = 0.94 ± 0.01, pCM = 0.76 ± 0.01). This study demonstrates the usefulness of the montage method and its potential for overcoming the limitations of pCM.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.