Disrupted functional connectivity associated with cognitive impairment in generalized anxiety disorder (GAD) and comorbid GAD and depression: a follow-up fMRI study.
{"title":"Disrupted functional connectivity associated with cognitive impairment in generalized anxiety disorder (GAD) and comorbid GAD and depression: a follow-up fMRI study.","authors":"Yiding Han, Haohao Yan, Xiaoxiao Shan, Huabing Li, Feng Liu, Ping Li, Jingping Zhao, Wenbin Guo","doi":"10.1503/jpn.230091","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Impaired functional connectivity between the bilateral hemispheres may serve as the neural substrate for anxiety and depressive disorders, yet its role in comorbid generalized anxiety disorder (GAD) and depression, as well as the effect of treatment on this connectivity, remains unclear. We sought to examine functional connectivity between homotopic regions of the 2 hemispheres (voxel-mirrored homotopic connectivity [VMHC]) among people with GAD with and without comorbid depression at baseline and after a 4-week paroxetine treatment.</p><p><strong>Methods: </strong>Drug-naïve patients with GAD, with or without comorbid depression and healthy controls underwent functional magnetic resonance imaging and clinical assessments at baseline and after treatment. We compared VMHC and seed-based functional connectivity across the 3 groups. We performed correlation analysis and support vector regression (SVR) to examine the intrinsic relationships between VMHC and symptoms.</p><p><strong>Results: </strong>Both patient groups (<i>n</i> = 40 with GAD only, <i>n</i> = 58 with GAD and depression) showed decreased VMHC in the precuneus, posterior cingulate cortex and lingual gyrus compared with healthy controls (<i>n</i> = 54). Moreover, they showed decreased VMHC in different brain regions compared with healthy controls. However, we did not observe any significant differences between the 2 patient groups. Seeds from abnormal VMHC clusters in patient groups had decreased functional connectivity. Voxel-mirrored homotopic connectivity in the precuneus, posterior cingulate cortex and lingual gyrus was negatively correlated with cognitive impairment among patients with GAD only and among all patients. The SVR analysis based on abnormal VMHC showed significant positive correlations (<i>p</i> < 0.0001) between predicted and actual treatment responses. However, we did not observe significant differences in VMHC or functional connectivity after treatment.</p><p><strong>Limitations: </strong>A notable dropout rate and intergroup somatic symptom variations may have biased the results.</p><p><strong>Conclusion: </strong>Patients with GAD with or without comorbid depression exhibited shared and distinct abnormal VMHC patterns, which might be linked to their cognitive deficits. These patterns have the potential to serve as prognostic biomarkers for GAD.<b>Clinical trial registration:</b> ClinicalTrials.gov NCT03894085.</p>","PeriodicalId":50073,"journal":{"name":"Journal of Psychiatry & Neuroscience","volume":"48 6","pages":"E439-E451"},"PeriodicalIF":4.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Psychiatry & Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1503/jpn.230091","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Impaired functional connectivity between the bilateral hemispheres may serve as the neural substrate for anxiety and depressive disorders, yet its role in comorbid generalized anxiety disorder (GAD) and depression, as well as the effect of treatment on this connectivity, remains unclear. We sought to examine functional connectivity between homotopic regions of the 2 hemispheres (voxel-mirrored homotopic connectivity [VMHC]) among people with GAD with and without comorbid depression at baseline and after a 4-week paroxetine treatment.
Methods: Drug-naïve patients with GAD, with or without comorbid depression and healthy controls underwent functional magnetic resonance imaging and clinical assessments at baseline and after treatment. We compared VMHC and seed-based functional connectivity across the 3 groups. We performed correlation analysis and support vector regression (SVR) to examine the intrinsic relationships between VMHC and symptoms.
Results: Both patient groups (n = 40 with GAD only, n = 58 with GAD and depression) showed decreased VMHC in the precuneus, posterior cingulate cortex and lingual gyrus compared with healthy controls (n = 54). Moreover, they showed decreased VMHC in different brain regions compared with healthy controls. However, we did not observe any significant differences between the 2 patient groups. Seeds from abnormal VMHC clusters in patient groups had decreased functional connectivity. Voxel-mirrored homotopic connectivity in the precuneus, posterior cingulate cortex and lingual gyrus was negatively correlated with cognitive impairment among patients with GAD only and among all patients. The SVR analysis based on abnormal VMHC showed significant positive correlations (p < 0.0001) between predicted and actual treatment responses. However, we did not observe significant differences in VMHC or functional connectivity after treatment.
Limitations: A notable dropout rate and intergroup somatic symptom variations may have biased the results.
Conclusion: Patients with GAD with or without comorbid depression exhibited shared and distinct abnormal VMHC patterns, which might be linked to their cognitive deficits. These patterns have the potential to serve as prognostic biomarkers for GAD.Clinical trial registration: ClinicalTrials.gov NCT03894085.
期刊介绍:
The Journal of Psychiatry & Neuroscience publishes papers at the intersection of psychiatry and neuroscience that advance our understanding of the neural mechanisms involved in the etiology and treatment of psychiatric disorders. This includes studies on patients with psychiatric disorders, healthy humans, and experimental animals as well as studies in vitro. Original research articles, including clinical trials with a mechanistic component, and review papers will be considered.