{"title":"Fact Finding Instructor-based Clustering Technique for BP Estimation using Human Speech Signals.","authors":"Vaishali Rajput, Preeti Mulay","doi":"10.1080/10255842.2023.2273203","DOIUrl":null,"url":null,"abstract":"<p><p>Blood Pressure (BP) is considered an essential factor that provides information regarding cardiovascular function. Regular monitoring of the BP is required for proper healthcare maintenance that avoids the high risk of life due to high and low BP. Several methods were devised for the estimation of BP, but the estimation accuracy is still a challenging task. Hence this research introduces an efficient BP estimation technique using the Fact Finding Instructor (FFI) based clustering method by considering the speech signal of the patients. An efficient BP extraction technique is introduced using the FFI Optimization algorithm an integration of the mannerism of the fact finder that identifies the suspect who commits the criminal offense and, with the instructor with good knowledge, these make the trainee more efficient. The detection and suspect's arrest contain two phases, the fact-finding phase and the chasing phase. Initially, the speech signal is collected from the database and pre-processed for removing noise and artifacts. Then feature extraction is used for the minimization of the computation overhead that generates a feature vector. The clustering of BP is employed with the k-means clustering algorithm and the proposed FFI optimization algorithm. The FFI Optimization algorithm provides a fast convergence rate due to the fact-finding phase and provides accurate detection of the suspect's location along with that the clustering of classes of patients' BP by considering the feature of the speech signal. The clusters formed using the FFI optimization algorithm are combined with the K-means clustering, by multiplying the clusters the BP estimation is implemented on three criteria Low BP, Normal, and, High BP. Finally, the output generated by both the clustering operations is multiplied together for the estimation of the BP. The performance of the proposed method is evaluated using the metrics like Davies Bouldin score, Homogeneity score, Completeness score, Jacquard Similarity score, Silhouette score, and Dunn's Index which acquired the improvement rate of 0.98, 0.96, 0.96, 0.98, 0.95, and 0.98 for training percentage 90, respectively to the existing Teaching Learning Based Optimization(TLBO) clustering technique.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2273203","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Blood Pressure (BP) is considered an essential factor that provides information regarding cardiovascular function. Regular monitoring of the BP is required for proper healthcare maintenance that avoids the high risk of life due to high and low BP. Several methods were devised for the estimation of BP, but the estimation accuracy is still a challenging task. Hence this research introduces an efficient BP estimation technique using the Fact Finding Instructor (FFI) based clustering method by considering the speech signal of the patients. An efficient BP extraction technique is introduced using the FFI Optimization algorithm an integration of the mannerism of the fact finder that identifies the suspect who commits the criminal offense and, with the instructor with good knowledge, these make the trainee more efficient. The detection and suspect's arrest contain two phases, the fact-finding phase and the chasing phase. Initially, the speech signal is collected from the database and pre-processed for removing noise and artifacts. Then feature extraction is used for the minimization of the computation overhead that generates a feature vector. The clustering of BP is employed with the k-means clustering algorithm and the proposed FFI optimization algorithm. The FFI Optimization algorithm provides a fast convergence rate due to the fact-finding phase and provides accurate detection of the suspect's location along with that the clustering of classes of patients' BP by considering the feature of the speech signal. The clusters formed using the FFI optimization algorithm are combined with the K-means clustering, by multiplying the clusters the BP estimation is implemented on three criteria Low BP, Normal, and, High BP. Finally, the output generated by both the clustering operations is multiplied together for the estimation of the BP. The performance of the proposed method is evaluated using the metrics like Davies Bouldin score, Homogeneity score, Completeness score, Jacquard Similarity score, Silhouette score, and Dunn's Index which acquired the improvement rate of 0.98, 0.96, 0.96, 0.98, 0.95, and 0.98 for training percentage 90, respectively to the existing Teaching Learning Based Optimization(TLBO) clustering technique.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.