Genome-scale metabolic models consistently predict in vitro characteristics of Corynebacterium striatum.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in bioinformatics Pub Date : 2023-10-23 eCollection Date: 2023-01-01 DOI:10.3389/fbinf.2023.1214074
Famke Bäuerle, Gwendolyn O Döbel, Laura Camus, Simon Heilbronner, Andreas Dräger
{"title":"Genome-scale metabolic models consistently predict <i>in vitro</i> characteristics of <i>Corynebacterium striatum</i>.","authors":"Famke Bäuerle, Gwendolyn O Döbel, Laura Camus, Simon Heilbronner, Andreas Dräger","doi":"10.3389/fbinf.2023.1214074","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Genome-scale metabolic models (GEMs) are organism-specific knowledge bases which can be used to unravel pathogenicity or improve production of specific metabolites in biotechnology applications. However, the validity of predictions for bacterial proliferation in <i>in vitro</i> settings is hardly investigated. <b>Methods:</b> The present work combines <i>in silico</i> and <i>in vitro</i> approaches to create and curate strain-specific genome-scale metabolic models of <i>Corynebacterium striatum</i>. <b>Results:</b> We introduce five newly created strain-specific genome-scale metabolic models (GEMs) of high quality, satisfying all contemporary standards and requirements. All these models have been benchmarked using the community standard test suite Metabolic Model Testing (MEMOTE) and were validated by laboratory experiments. For the curation of those models, the software infrastructure <i>refineGEMs</i> was developed to work on these models in parallel and to comply with the quality standards for GEMs. The model predictions were confirmed by experimental data and a new comparison metric based on the doubling time was developed to quantify bacterial growth. <b>Discussion:</b> Future modeling projects can rely on the proposed software, which is independent of specific environmental conditions. The validation approach based on the growth rate calculation is now accessible and closely aligned with biological questions. The curated models are freely available via BioModels and a GitHub repository and can be used. The open-source software refineGEMs is available from https://github.com/draeger-lab/refinegems.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2023.1214074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Genome-scale metabolic models (GEMs) are organism-specific knowledge bases which can be used to unravel pathogenicity or improve production of specific metabolites in biotechnology applications. However, the validity of predictions for bacterial proliferation in in vitro settings is hardly investigated. Methods: The present work combines in silico and in vitro approaches to create and curate strain-specific genome-scale metabolic models of Corynebacterium striatum. Results: We introduce five newly created strain-specific genome-scale metabolic models (GEMs) of high quality, satisfying all contemporary standards and requirements. All these models have been benchmarked using the community standard test suite Metabolic Model Testing (MEMOTE) and were validated by laboratory experiments. For the curation of those models, the software infrastructure refineGEMs was developed to work on these models in parallel and to comply with the quality standards for GEMs. The model predictions were confirmed by experimental data and a new comparison metric based on the doubling time was developed to quantify bacterial growth. Discussion: Future modeling projects can rely on the proposed software, which is independent of specific environmental conditions. The validation approach based on the growth rate calculation is now accessible and closely aligned with biological questions. The curated models are freely available via BioModels and a GitHub repository and can be used. The open-source software refineGEMs is available from https://github.com/draeger-lab/refinegems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因组规模的代谢模型一致地预测纹状体棒状杆菌的体外特征。
引言:基因组规模代谢模型(GEMs)是生物体特有的知识库,可用于揭示致病性或提高生物技术应用中特定代谢产物的产生。然而,在体外环境中预测细菌增殖的有效性几乎没有得到研究。方法:本工作结合了计算机和体外方法,创建和策划纹状体棒状杆菌的菌株特异性基因组级代谢模型。结果:我们介绍了五个新创建的高质量菌株特异性基因组规模代谢模型(GEM),满足所有当代标准和要求。所有这些模型都使用社区标准测试套件代谢模型测试(MEMOTE)进行了基准测试,并通过实验室实验进行了验证。为了管理这些模型,开发了软件基础设施精化GEM,以并行处理这些模型,并符合GEM的质量标准。实验数据证实了模型预测,并开发了一种基于倍增时间的新的比较指标来量化细菌生长。讨论:未来的建模项目可以依赖于所提出的软件,该软件独立于特定的环境条件。基于生长率计算的验证方法现在可以使用,并且与生物学问题密切相关。策划的模型可以通过BioModels和GitHub存储库免费获得,并且可以使用。开源软件精化GEMS可从https://github.com/draeger-lab/refinegems.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
The quantum hypercube as a k-mer graph. A review of model evaluation metrics for machine learning in genetics and genomics. Visual analysis of multi-omics data. Molecular docking and molecular dynamic simulation studies to identify potential terpenes against Internalin A protein of Listeria monocytogenes. PhIP-Seq: methods, applications and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1