Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics.

Frontiers in network physiology Pub Date : 2023-10-19 eCollection Date: 2023-01-01 DOI:10.3389/fnetp.2023.1227228
Krystal Sides, Grentina Kilungeja, Matthew Tapia, Patrick Kreidl, Benjamin H Brinkmann, Mona Nasseri
{"title":"Analyzing physiological signals recorded with a wearable sensor across the menstrual cycle using circular statistics.","authors":"Krystal Sides, Grentina Kilungeja, Matthew Tapia, Patrick Kreidl, Benjamin H Brinkmann, Mona Nasseri","doi":"10.3389/fnetp.2023.1227228","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to determine menstrual phases. A non-uniform pattern was observed in ovulating subjects, with a significant periodicity (p<math><mo><</mo></math>0.05) in mean temperature, heart rate (HR), Inter-beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and signal magnitude area (SMA) of the EDA phasic component in the frequency domain. In contrast, non-ovulating cycles displayed a more uniform distribution (p<math><mo>></mo></math>0.05). There was a significant difference between ovulating and non-ovulating cycles (p<math><mo><</mo></math>0.05) in temperature, IBI, and EDA but not in mean HR. Selected features were used in training an Autoregressive Integrated Moving Average (ARIMA) model, using data from at least one cycle of a subject, to predict the behavior of the signal in the last cycle. By iteratively retraining the algorithm on a per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 (<i>μ</i>S), respectively.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"3 ","pages":"1227228"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621043/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1227228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to identify the most significant features in physiological signals representing a biphasic pattern in the menstrual cycle using circular statistics which is an appropriate analytic method for the interpretation of data with a periodic nature. The results can be used empirically to determine menstrual phases. A non-uniform pattern was observed in ovulating subjects, with a significant periodicity (p<0.05) in mean temperature, heart rate (HR), Inter-beat Interval (IBI), mean tonic component of Electrodermal Activity (EDA), and signal magnitude area (SMA) of the EDA phasic component in the frequency domain. In contrast, non-ovulating cycles displayed a more uniform distribution (p>0.05). There was a significant difference between ovulating and non-ovulating cycles (p<0.05) in temperature, IBI, and EDA but not in mean HR. Selected features were used in training an Autoregressive Integrated Moving Average (ARIMA) model, using data from at least one cycle of a subject, to predict the behavior of the signal in the last cycle. By iteratively retraining the algorithm on a per-day basis, the mean temperature, HR, IBI and EDA tonic values of the next day were predicted with root mean square error (RMSE) of 0.13 ± 0.07 (C°), 1.31 ± 0.34 (bpm), 0.016 ± 0.005 (s) and 0.17 ± 0.17 (μS), respectively.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用循环统计分析可穿戴传感器在月经周期中记录的生理信号。
本研究旨在使用循环统计来确定代表月经周期双相模式的生理信号中最显著的特征,循环统计是解释周期性数据的适当分析方法。该结果可以根据经验用于确定月经阶段。在排卵期受试者中观察到不均匀的模式,在频域中,平均温度、心率(HR)、搏动间期(IBI)、皮肤电活动的平均强直分量(EDA)和EDA相位分量的信号幅度面积(SMA)具有显著的周期性(p0.05)。相反,非排卵周期的分布更均匀(p>0.05)。排卵周期和非排卵周期在温度、IBI和EDA方面有显著差异(p0.05),但在平均HR方面没有差异。所选特征用于训练自回归综合移动平均(ARIMA)模型,使用受试者至少一个周期的数据,以预测信号在最后一个周期中的行为。通过每天迭代重新训练算法,预测第二天的平均温度、HR、IBI和EDA张力值,均方根误差(RMSE)分别为0.13±0.07(C°)、1.31±0.34(bpm)、0.016±0.005(s)和0.17±0.17(μs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. Significant nocturnal wakefulness after sleep onset in metabolic dysfunction-associated steatotic liver disease. Networks through the lens of high-frequency oscillations. Constructing representative group networks from tractography: lessons from a dynamical approach. Physiological signal analysis and open science using the Julia language and associated software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1