Yohanka Martinez-Gzegozewska, Lynn Rasmussen, Sara McKellip, Anna Manuvakhova, N. Miranda Nebane, Andrew J. Reece, Pedro Ruiz, Melinda Sosa, Robert Bostwick, Paige Vinson
{"title":"High-Throughput cell-based immunofluorescence assays against influenza","authors":"Yohanka Martinez-Gzegozewska, Lynn Rasmussen, Sara McKellip, Anna Manuvakhova, N. Miranda Nebane, Andrew J. Reece, Pedro Ruiz, Melinda Sosa, Robert Bostwick, Paige Vinson","doi":"10.1016/j.slasd.2023.10.008","DOIUrl":null,"url":null,"abstract":"<div><p>A rapid drug discovery response to influenza outbreaks with the potential to reach pandemic status could help minimize the virus's impact by reducing the time to identify anti-influenza drugs. Although several anti-influenza strategies have been considered in the search for new drugs, only a few therapeutic agents are approved for clinical use. The cytopathic effect induced by the influenza virus in Madin Darby canine kidney (MDCK) cells has been widely used for high-throughput anti-influenza drug screening, but the fact that the MDCK cells are not human cells constitutes a disadvantage when searching for new therapeutic agents for human use. We have developed a highly sensitive cell-based imaging assay for the identification of inhibitors of influenza A and B virus that is high-throughput compatible using the A549 human cell line. The assay has also been optimized for the assessment of the neutralizing effect of anti-influenza antibodies in the absence of trypsin, which allows testing of purified antibodies and serum samples. This assay platform can be applied to full high-throughput screening campaigns or later stages requiring quantitative potency determinations for structure-activity relationships.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 1","pages":"Pages 66-76"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000783/pdfft?md5=fb5946572ad6363ceeb2a134add0ee25&pid=1-s2.0-S2472555223000783-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000783","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A rapid drug discovery response to influenza outbreaks with the potential to reach pandemic status could help minimize the virus's impact by reducing the time to identify anti-influenza drugs. Although several anti-influenza strategies have been considered in the search for new drugs, only a few therapeutic agents are approved for clinical use. The cytopathic effect induced by the influenza virus in Madin Darby canine kidney (MDCK) cells has been widely used for high-throughput anti-influenza drug screening, but the fact that the MDCK cells are not human cells constitutes a disadvantage when searching for new therapeutic agents for human use. We have developed a highly sensitive cell-based imaging assay for the identification of inhibitors of influenza A and B virus that is high-throughput compatible using the A549 human cell line. The assay has also been optimized for the assessment of the neutralizing effect of anti-influenza antibodies in the absence of trypsin, which allows testing of purified antibodies and serum samples. This assay platform can be applied to full high-throughput screening campaigns or later stages requiring quantitative potency determinations for structure-activity relationships.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).