Darren Turner, Emiliano Cimoli, Arko Lucieer, Ryan S. Haynes, Krystal Randall, Melinda J. Waterman, Vanessa Lucieer, Sharon A. Robinson
{"title":"Mapping water content in drying Antarctic moss communities using UAS-borne SWIR imaging spectroscopy","authors":"Darren Turner, Emiliano Cimoli, Arko Lucieer, Ryan S. Haynes, Krystal Randall, Melinda J. Waterman, Vanessa Lucieer, Sharon A. Robinson","doi":"10.1002/rse2.371","DOIUrl":null,"url":null,"abstract":"Antarctic moss beds are sensitive to climatic conditions, and both their survival and community composition are particularly influenced by the availability of liquid water over summer. As Antarctic regions increasingly face climate pressures (e.g., changing hydrology and heat waves), advancing capabilities to efficiently and non-destructively monitor water content in moss communities becomes a key research priority. Because of the complexity induced by multiple micro-climatic drivers and its fragility, tracking the evolution and responses of moss bed moisture requires monitoring methods that are non-intrusive, efficient, and spatially significant, such as the use of unoccupied aerial systems (UAS). In this study, we combine a multi-species drying laboratory experiment with short-wave infrared (SWIR) spectroscopy analyses to first develop a Random Forest regression Model (RFM) capable of predicting Antarctic moss turf water content (~5% error). The RFM was then applied to UAS-borne SWIR imaging data (900–1700 nm, <16 nm spectral resolution) of the moss beds at high spatial resolution (2 cm) across three sites in the vicinity of Casey Station, Antarctica. The sites differed in terrain, snow cover, and moisture availability to evaluate method capabilities under different conditions. Optimum RFM parameters and input variables (spectral indices and reflectance spectra) were determined. Maps of moss moisture were validated <i>via</i> acquiring moss spectra and water content (using sponges inserted into the moss turf) collected in situ, for which an exponential correlation (<i>R</i><sup>2</sup> = 0.72) was reported. RFM further allowed investigation of the influential spectral variables to model water content in moss and associated spectral water absorption features. We demonstrated that UAS-borne SWIR imaging is a promising new tool to map and quantify water content in Antarctic moss beds. Hyperspectral mapping facilitates the exploration of the spatial variability of moss health and enables the creation of a baseline against which changes in these moss communities can be measured.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"44 23","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.371","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Antarctic moss beds are sensitive to climatic conditions, and both their survival and community composition are particularly influenced by the availability of liquid water over summer. As Antarctic regions increasingly face climate pressures (e.g., changing hydrology and heat waves), advancing capabilities to efficiently and non-destructively monitor water content in moss communities becomes a key research priority. Because of the complexity induced by multiple micro-climatic drivers and its fragility, tracking the evolution and responses of moss bed moisture requires monitoring methods that are non-intrusive, efficient, and spatially significant, such as the use of unoccupied aerial systems (UAS). In this study, we combine a multi-species drying laboratory experiment with short-wave infrared (SWIR) spectroscopy analyses to first develop a Random Forest regression Model (RFM) capable of predicting Antarctic moss turf water content (~5% error). The RFM was then applied to UAS-borne SWIR imaging data (900–1700 nm, <16 nm spectral resolution) of the moss beds at high spatial resolution (2 cm) across three sites in the vicinity of Casey Station, Antarctica. The sites differed in terrain, snow cover, and moisture availability to evaluate method capabilities under different conditions. Optimum RFM parameters and input variables (spectral indices and reflectance spectra) were determined. Maps of moss moisture were validated via acquiring moss spectra and water content (using sponges inserted into the moss turf) collected in situ, for which an exponential correlation (R2 = 0.72) was reported. RFM further allowed investigation of the influential spectral variables to model water content in moss and associated spectral water absorption features. We demonstrated that UAS-borne SWIR imaging is a promising new tool to map and quantify water content in Antarctic moss beds. Hyperspectral mapping facilitates the exploration of the spatial variability of moss health and enables the creation of a baseline against which changes in these moss communities can be measured.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.